Log in

A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The anode material plays a crucial role in the reliability and safety of Li-ion batteries. Among various of anode materials, Cr, Ti-based anode materials, including LiCrTiO4, Li5Cr9Ti4O24, and Li5Cr7Ti6O25, have caught much attention because of the obvious advantages, such as high potential plateau (about 1.55 V vs. Li/Li+) and minimum chance for the formation of solid electrolyte interphase film and dendritic lithium, which remarkably improves the and safety and cycling stability. Nonetheless, the poor ionic conductivity limits the large-scale applications. At present, many effective strategies have been used to enhance the electrochemical property, and several significant progresses have been also made. A comprehensive review of the recent progresses, including crystal structure, lithium storage mechanism, synthesis, modification, and morphology control, were summarized systematically. The critical challenges and future perspectives of Cr, Ti-based anode materials were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Li Z, Khajepour A, Song J (2019) A comprehensive review of the key technologies for pure electric vehicles. Energy 182:824–839

    Article  Google Scholar 

  2. Li Y, Huang Y, Zheng Y, Huang R, Yao J (2019) Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources 416:62–71

    Article  CAS  Google Scholar 

  3. Xu ST, Zhang ZG, Wu TY, Xue Y (2018) Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries. Ionics 24(1):99–109

    Article  CAS  Google Scholar 

  4. Huang Y, Yao J, Zheng Y, Huang R, Li Y (2019) A simple preparation of rod-like Fe2O3 with superior lithium storage performance. Mater Lett 234:105–108

    Article  CAS  Google Scholar 

  5. Yan J, Yao J, Zhang Z, Li Y, **ao S (2019) 3D hierarchical porous ZnFe2O4 nano/micro structure as a high-performance anode material for lithium-ion batteries. Mater Lett 245:122–125

    Article  CAS  Google Scholar 

  6. Khan I, Tiwari PK, Basu S (2018) Analysis of gadolinium-doped ceria-ternary carbonate composite electrolytes for solid oxide fuel cells. Ionics 24(1):211–219

    Article  CAS  Google Scholar 

  7. Zhu YR, Peng PP, Wu JZ, Yi TF, **e Y, Luo SH (2019) Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics 336:110–119

    Article  CAS  Google Scholar 

  8. Wu JZ, Li XY, Zhu YR, Yi TF, Zhang JH, **e Y (2016) Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceram Int 42(7):9250–9256

    Article  CAS  Google Scholar 

  9. Zheng Y, Li Y, Yao J, Huang Y, **ao S (2018) Facile synthesis of porous tubular NiO with considerable pseudocapacitance as high capacity and long life anode for lithium-ion batteries. Ceram Int 44(2):2568–2577

    Article  CAS  Google Scholar 

  10. Yi T-F, Mei J, Guan B, Cui P, Luo S, **e Y, Li Y (2020) Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram Int 46(1):421–429

    Article  CAS  Google Scholar 

  11. Yi TF, Li YM, Wu JZ, **e Y, Luo SH (2018) Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 284:128–141

    Article  CAS  Google Scholar 

  12. Yi TF, Mei J, **e Y, Luo SH (2019) Hybrid porous flower-like NiO@CeO2microspheres with improved pseudocapacitiveproperties. Electrochim Acta 297:593–605

    Article  CAS  Google Scholar 

  13. Huang Y, Li Y, Huang R, Yao J (2019) Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for Li-ion batteries. J Phys Chem C 123(20):12614–12622

    CAS  Google Scholar 

  14. Uddin M-J, Alaboina PK, Cho S-J (2017) Nanostructured cathode materials synthesis for lithium-ion batteries. Mater Today Energy 5:138–157

    Article  Google Scholar 

  15. Huang B, Pan ZF, Su XY, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286

    Article  CAS  Google Scholar 

  16. Zhu YR, Yi TF, Li XY, **e Y, Luo SH (2019) Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Mater Lett 239:56–58

    Article  CAS  Google Scholar 

  17. Ullah A, Majid A, Rani N (2018) A review on first principles based studies for improvement of cathode material of lithium ion batteries. J Energy Chem 27(1):219–237

    Article  Google Scholar 

  18. Han X, Gui X, Yi TF, Li YW, Yue CB (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid State Mater Sci 22:109–126

    Article  CAS  Google Scholar 

  19. Yi TF, Peng PP, Fang Z, Zhu YR, **e Y, Luo S (2019) Carbon-coated LiMn1-xFexPO4 (0≤x≤0.5) nanocomposites as high-performance cathode materials for Li-ion battery. Compos B Eng 175:107067

    Article  CAS  Google Scholar 

  20. Wu KQ, Wang DJ, Lin XT, Shao LY, Shui M, Jiang XX, Long NB, Ren YL, Shu J (2014) Comparative study of Na2Li2Ti6O14 prepared by different methods as advanced anode material for lithium-ion batteries. J Electroanal Chem 717-718:10–16

    Article  CAS  Google Scholar 

  21. Hung IM, Yang YC, Su HJ, Zhang J (2015) Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery. Ceram Int 41:779–786

    Article  CAS  Google Scholar 

  22. Fan SS, Zhong H, Yu HT, Lou M, **e Y, Zhu YR (2017) Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater 60(5):427–437

    Article  CAS  Google Scholar 

  23. Shen L, Yuan C, Luo H (2010) Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J Mater Chem 20:6998–7004

    Article  CAS  Google Scholar 

  24. Chae S, Ko M, Kim K, Ahn K, Cho J (2017) Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1(1):47–60

    Article  CAS  Google Scholar 

  25. Yi T-F, **e Y, Shu J, Wang Z, Yue C, Zhu R-S, Qiao H-B (2011) Structure and electrochemical performance of niobium-substituted spinel lithium titanium oxide synthesized by solid-state method. J Electrochem Soc 158(30):A266–A274

    Article  CAS  Google Scholar 

  26. Yang L, Zhu X, Li X, Zhao X, Pei K, You W, Li X, Chen Y, Lin C, Che R (2019) Conductive copper niobate: superior Li+-storage capability and novel Li+-transport mechanism. Adv Energy Mater 9:1902174

    Article  CAS  Google Scholar 

  27. Fu Q, Li R, Zhu X, Liang G, Luo L, Chen Y, Lin C, Zhao XS (2019) Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A 7:19862–19871

    Article  CAS  Google Scholar 

  28. Lou X, Li R, Zhu X, Luo L, Chen Y, Lin C, Li H, Zhao XS (2019) New anode material for lithium-ion batteries: aluminum niobate (AlNb11O29). ACS Appl Mater Interfaces 11(6):6089–6096

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X, Xu J, Luo Y, Fu Q, Liang G, Luo L, Chen Y, Lin C, Zhao XS (2019) MoNb12O33 as a new anode material for high capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A 7:6522–6532

    Article  CAS  Google Scholar 

  30. Zhu X, Cao H, Li R, Fu Q, Liang G, Chen Y, Luo L, Lin C, Zhao XS (2019) Zinc niobate materials: crystal structures, energy storage capabilities and working mechanisms. J Mater Chem A 7:25537–25547

    Article  CAS  Google Scholar 

  31. Li X, Huang YY, Li YY, Sun SX, Liu Y, Luo JH, Han JT, Huang YH (2017) Al do** effects on LiCrTiO4 as an anode for lithium-ion batteries. RSC Adv 7:4791–4797

    Article  CAS  Google Scholar 

  32. Liu D, Han J, Dontigny M, Charest P, Guerfi A, Zaghib K, Goodenough JB (2010) Redox behaviors of Ni and Cr with different counter cations in spinel cathodes for Li-ion batteries. J Electrochem Soc 157:A770–A775

    Article  CAS  Google Scholar 

  33. Dissanayake M, Gunawardane RP, Sumathipala HH, West AR (1995) New solid electrolytes and mixed conductors: Li3+xCr1-xMxO4: M=Ge, Ti. Solid State Ionics 76:215–220

    Article  CAS  Google Scholar 

  34. Lin CF, Deng SJ, Shen H, Wang GZ, Li YF, Yu L, Lin SW, Li JB, Lu L (2015) Li5Cr9Ti4O24: a new anode material for lithium-ion batteries. J Alloys Compd 650:616–621

    Article  CAS  Google Scholar 

  35. Yu HX, Qian SS, Yan L, Li P, Lin XT, Luo MH, Long NB, Shui M, Shu J (2016) Observation of the lithium storage behavior in LiCrTiO4 via in-situ and ex-situ techniques. Electrochim Acta 212:84–94

    Article  CAS  Google Scholar 

  36. Berg H, Thomas J, Liu W, Farrington G (1994) A neutron diffraction study of Ni substituted LiMn2O4. Solid State Ionics 112:165–168

    Google Scholar 

  37. Höweling A, Stenzel D, Gesswein H, Kaus M, Indris S, Bergfeldt T, Binder J (2016) Variations in structure and electrochemistry of iron- and titanium-doped lithium nickel manganese oxyfluoride spinels. J Power Sources 315:269–276

    Article  CAS  Google Scholar 

  38. Fu Y, Jiang H, Hu Y, Zhang L, Li C (2014) Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries. J Power Sources 261:306–310

    Article  CAS  Google Scholar 

  39. Yi TF, Mei J, Zhu YR, Fang ZK (2015) Li5Cr7Ti6O25 as a novel negative electrode material for lithium-ion batteries. Chem Commun 51:14050–14053

    Article  CAS  Google Scholar 

  40. Yan L, Yu HX, Qian SS, Li P, Lin XT, Wu YY, Long NB, Shui M, Shu J (2016) Novel spinel Li5Cr9Ti4O24 anode: its electrochemical property and lithium storage process. Electrochim Acta 209:17–24

    Article  CAS  Google Scholar 

  41. Liu S, Yan L, Lan H, Yu HX, Qian SS, Cheng X, Long NB, Shui M, Shu J (2017) Investigation of Li5Cr7Ti6O25 as novel anode material for high-power lithium-ion batteries. Ceram Int 43:7908–7915

    Article  CAS  Google Scholar 

  42. Chen W, Liang HF, Qi ZB, Shao LY, Shu J (2015) Enhanced electrochemical properties of lithium cobalt titanate via lithium-site substitution with sodium. Electrochim Acta 174:1202–1215

    Article  CAS  Google Scholar 

  43. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc 131:17786–17792

    Article  CAS  PubMed  Google Scholar 

  44. Rahman MM, Wang JZ, Hassan MF, Wexler D, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: a nanocomposite anode material for Li-ion batteries. Adv Eng Mater 1:212–220

    Article  CAS  Google Scholar 

  45. Wang L, **ao QZ, Wu LJ, Lei GT, Li ZH (2013) Spinel LiCrTiO4 fibers as an advanced anode material in high performance lithium ion batteries. Solid State Ionics 236:43–47

    Article  CAS  Google Scholar 

  46. Wu K, Shu J, Lin X, Shao L, Lao M, Shui M, Li P, Long N, Wang D (2014) Enhanced electrochemical performance of sodium lithium titanate by coating various carbons. J Power Sources 272:283–290

    Article  CAS  Google Scholar 

  47. Zhang HL, Zhao HB, Khan MA, Zou WW, Xu JQ, Zhang L, Zhang JJ (2018) Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J Mater Chem A 6:20564–20620

    Article  CAS  Google Scholar 

  48. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767

    Article  Google Scholar 

  49. Mukanova A, Jetybayeva A, Myung S-T, Kim S-S, Bakenov Z (2018) A mini-review on the development of Si-based thin film anodes for Li-ion batteries. Mater Today Energy 9:49–66

    Article  Google Scholar 

  50. Aravindan V, Chuiling W, Madhavi S (2012) High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem 22:16026

    Article  CAS  Google Scholar 

  51. Yao Y, Zhang L, Bie XF, Chen H, Wang CZ, Du F, Chen G (2017) Exploration of spinel LiCrTiO4 as cathode material for rechargeable mg-Li hybrid batteries. Chem Eur J 23:17935–17939

    Article  CAS  PubMed  Google Scholar 

  52. Bao Y, Kang QL, Liu C, Ma JZ (2018) Sol-gel-controlled synthesis of hollow TiO2 spheres and their photocatalytic activities and lithium storage properties. Mater Lett 214:272–275

    Article  CAS  Google Scholar 

  53. Shobana MK, Kim Y (2017) Improved electrode materials for Li-ion batteries using microscale and sub-micrometer scale porous materials - a review. J Alloys Compd 729:463–474

    Article  CAS  Google Scholar 

  54. Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873

    Article  CAS  PubMed  Google Scholar 

  55. Gong ZL, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  56. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 50:881–928

    Article  CAS  Google Scholar 

  57. Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309:307–311

    Article  CAS  Google Scholar 

  58. Tang YK, Liu L, Zhao HY, Gao SS, Lv Y, Kong LB, Ma JH, Jia DZ (2017) Hybrid porous bamboo-like CNTs embedding ultrasmall LiCrTiO4 nanoparticles as high rate and long life anode materials for lithium ion batteries. Chem Commun 53:1033

    Article  CAS  Google Scholar 

  59. Fagundes NG, Nobre FX, Basilio LAL, Melo AD, Bandeira B, Sales JCC Jr, Andrade JCS, Anglada-Rivera J, Aguilera L, Pérez de la Cruz J, Leyet Y (2019) Novel and simple way to synthesize Na2Ti6O13 nanoparticles by sonochemical method. Solid State Sci 88:63–66

    Article  CAS  Google Scholar 

  60. Tang JL, Kye DK, Pol VG (2018) Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries. J Power Sources 396:476–482

    Article  CAS  Google Scholar 

  61. Okawa H, Yabuki J, Kawamura Y, Arise I, Sato M (2008) Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method. Mater Res Bull 43(5):1203–1208

    Article  CAS  Google Scholar 

  62. Yi TF, Hu XG (2007) Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sources 167:185–191

    Article  CAS  Google Scholar 

  63. Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399

    Article  CAS  PubMed  Google Scholar 

  64. Park N-G, Kim KM, Chang SH (2001) Sonochemical synthesis of the high energy density cathode material VOPO4·2H2O. Electrochem Commun 3(10):553–556

    Article  CAS  Google Scholar 

  65. Liang B, Liu YP, Xu YH (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267(1):469–490

    Article  CAS  Google Scholar 

  66. Rao CV, Rambabu B (2010) Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor. Solid State Ionics 181:839–843

    Article  CAS  Google Scholar 

  67. Feng XY, Shen C, Ding N, Chen CH (2012) Lithium chromium oxide modified spinel LiCrTiO4 with improved electrochemical properties. J Mater Chem 22:20861–20865

    Article  CAS  Google Scholar 

  68. Li H, Shen L, Ding B, Pang G, Dou H, Zhang X (2015) Ultralong SrLi2Ti6O14 nanowires composed of single-crystalline nanoparticles: promising candidates for high-power Lithium ions batteries. Nano Energy 13:18–27

    Article  CAS  Google Scholar 

  69. Jayaraman S, Aravindan V, Suresh KP, Chui LW, Ramakrishna S, Madhavi S (2014) Exceptional performance of TiNb2O7 anode in all one-dimensional architecture by electrospinning. ACS Appl Mater Interfaces 6:8660–8666

    Article  CAS  PubMed  Google Scholar 

  70. Zhao SP, Li YP, Zhang FX, Guo JL (2019) Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J Alloys Compd 805:873–879

    Article  CAS  Google Scholar 

  71. Jiang GX, Li L, **e ZJ, Cao BQ (2019) Facile fabrication of porous NiMoO4@C nanowire as high performance anode material for lithium ion batteries. Ceram Int 45(15):18462–18470

    Article  CAS  Google Scholar 

  72. Luo MH, Yu HX, Cheng X, Zhu HJ, Ye WQ, Yan L, Qian SS, Shui M, Shu J (2017) LiCrTiO4 nanowires with the (111) peak evolution during cycling for high-performance Lithium ion battery anodes. ACS Sustain Chem Eng 5:10580–10587

    Article  CAS  Google Scholar 

  73. Armer CF, Yeoh JS, Li X, Lowe A (2018) Electrospun vanadium-based oxides as electrode materials. J Energy Chem 395:414–429

    CAS  Google Scholar 

  74. Zhao JB, Zhang YY, Wang YH, Li H, Peng YY (2018) The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry 27(6):1536–1554

    Article  Google Scholar 

  75. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215

    Article  CAS  Google Scholar 

  76. Yi TF, Yang SY, **e Y (2015) Recent advances of Li4Ti5O12 as promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3(11):5750–5777

    Article  CAS  Google Scholar 

  77. Arilloa MA, Lópeza ML, Fernández MT, Veiga ML, Pico C (1996) Preparation and magnetic properties of LiCr1-xAlxTiO4 (0≤x≤0.4). J Solid State Chem 125:211–215

    Article  Google Scholar 

  78. Arilloa MA, Lópeza ML, Picoa C, Veigaa ML (1999) Electrical properties of LiCr1-xAlxTiO4 (0≤x≤0.4). Solid State Ionics 120:227–231

    Article  Google Scholar 

  79. Arilloa MA, Lópeza ML, Picoa C, Veigaa ML, Villanueva A (2003) Electrochemical behaviour of LiCr1-xAlxTiO4 (0≤x≤0.4). Solid State Ionics 161:49–54

    Article  CAS  Google Scholar 

  80. Wang W, Gu L, Qian H (2016) Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. J Power Sources 307:410–415

    Article  CAS  Google Scholar 

  81. Yi TF, Mei J, Zhu YR (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105

    Article  CAS  Google Scholar 

  82. Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  83. Zhou GM, Li F, Cheng HM (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338

    Article  CAS  Google Scholar 

  84. Xu ZQ, Zhao KM, Gan QM, Liu SQ, He Z (2018) Hierarchical Co3O4@C hollow microspheres with high capacity as an anode material for lithium-ion batteries. Ionics 24(12):3757–3769

    Article  CAS  Google Scholar 

  85. Yang ZW, Yang Y, Guo HJ, Wang ZX, Li XH, Zhou Y, Wang JX (2018) Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries. Ionics 24(11):3405–3411

    Article  CAS  Google Scholar 

  86. Yang JW, Yan B, Ye J, Li X, Liu YS, You HP (2014) Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries. Phys Chem Chem Phys 16:2882

    Article  CAS  PubMed  Google Scholar 

  87. Yan L, Qian S, Yu H, Li P, Lan H, Long N, Zhang R, Shui M, Shu J (2017) Carbon-enhanced electrochemical performance for spinel Li5Cr7Ti6O25 as a lithium host material. ACS Sustain Chem Eng 5(1):957–964

    Article  CAS  Google Scholar 

  88. Wang XW, Sun GZ, Routh P, Kim D-H, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    Article  CAS  PubMed  Google Scholar 

  89. Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Sustain Energ Fuels 47:2680–2272

    CAS  Google Scholar 

  90. Shah A, Zahid A, Subhan H, Munir A, Iftikhar FJ, Akbar M (2018) Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices. Sustain Energy Fuels 2:1398–1429

    Article  CAS  Google Scholar 

  91. Yan L, Yu HX, Qian SS, Li P, Lin XT, Long NB, Zhang RF, Shui M, Shu J (2016) Enhanced lithium storage performance of Li5Cr9Ti4O24 anode by nitrogen and sulfur dual-doped carbon coating. Electrochim Acta 213:217–224

    Article  CAS  Google Scholar 

  92. Chang CM, Chen YC, Ma WL, Wang PH, Lee CF, Chen HS, Yang YWC (2015) Sol-gel synthesis of low carbon content and low surface area Li4Ti5O12/carbon black composites as high-rate anode materials for lithium ion batteries. RSC Adv 5:74381–74390

    Article  CAS  Google Scholar 

  93. Yuan WY, Zhang Y, Cheng LF, Wu H, Zheng LX, Zhao DL (2016) The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. J Mater Chem A 4:8932–8951

    Article  CAS  Google Scholar 

  94. Salvetat J-P, Bonard J-M, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69(3):255–260

    Article  CAS  Google Scholar 

  95. Xu ZL, Kim J-K, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107

    Article  CAS  Google Scholar 

  96. Li YM, **ao H, Yi TF, He YB, Li XF (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78

    Article  Google Scholar 

  97. Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui DX (2017) Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A 5:19521–19540

    Article  CAS  Google Scholar 

  98. Han MC, Zhang JH, Li YM, Zhu YR, Yi TF (2019) Li5Cr7Ti6O25/multiwalled carbon nanotubes composites with fast charge-discharge performance as negative electrode materials for lithium-ion batteries. J Electrochem Soc 166(4):A626–A634

    Article  CAS  Google Scholar 

  99. Mei J, Yi TF, Li XY, Zhu YR, **e Y, Zhang CF (2017) A robust strategy for crafting Li5Cr7Ti6O25@CeO2 composites as high-performance anode material for Lithium-ion battery. ACS Appl Mater Interfaces

  100. Sengodu P, Deshmukh AD (2015) Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv 5:42109–42130

    Article  CAS  Google Scholar 

  101. Zhu JD, Zhu P, Yan CY, Dong X, Zhang XW (2019) Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog Polym Sci 90:118–163

    Article  CAS  Google Scholar 

  102. Meng QF, Cai KF, Chen YX, Chen LD (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  103. Yi TF, Peng PP, Han X, Zhu YR, Luo SH (2019) Interconnected Co3O4@CoNiO2@PPy nanorod and nanosheet composite grown on nickel foam as binder-free electrodes for Li-ion batteries. Solid State Ionics 329:131–139

    Article  CAS  Google Scholar 

  104. Yi TF, Mei J, Peng PP, Luo SH (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B-Eng 167:566–572

    Article  CAS  Google Scholar 

  105. Yi TF, Han X, Chen B, Zhu YR, **e Y (2017) Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium-ion battery. J Alloys Compd 703:103–113

    Article  CAS  Google Scholar 

  106. Cheng CX, Chen F, Yi HY, Lai GS (2018) Enhanced electrochemical and safe performances of LiNi1/3Co1/3Mn1/3O2 by nano-CeO2 coating via a novel hydrolysis precipitate reaction route. J Alloys Compd 753:155–161

    Article  CAS  Google Scholar 

  107. Arumugam D, Kalaignan GP (2010) Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim Acta 55(28):8709–8716

    Article  CAS  Google Scholar 

  108. Yi T-F, Zhu Y-R, Tao W, Luo S-h, **e Y, Li X-F (2018) Recent advances in the research of MLi2Ti6O14 (M=2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41

    Article  CAS  Google Scholar 

  109. Yu Y, Guo Y (2019) Cerium oxide-modified lithium chromium titanate as high-performance anode material for lithium-ion battery. Ionics 25:367–371

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (no. 51672120), the National Natural Science Foundation Cultivation Program of Mudanjiang Normal University (GP2017003), and Key Program for International S&T Cooperation Projects of China” (no. 2017YFE0124300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, X., Hao, G. & Jiang, W. A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries. Ionics 26, 1081–1099 (2020). https://doi.org/10.1007/s11581-019-03375-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03375-w

Keywords

Navigation