Log in

Structural optical and electrical properties of RE4Zr3O12 (RE = Dy, Y, Er, and Yb) nanoceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Concentration of oxide ion vacancies and its ordering in crystalline lattices play an important role in the structural, optical and ionic transport properties of RE2O3–MO2 (RE (Rare earths), M = Ti, Zr, Hf) systems. Rarely investigated rare earth zirconate system, RE4Zr3O12 (RE = Dy, Y, Er, and Yb) exhibiting the polymorphic structural forms, was chosen for the present study. RE4Zr3O12 nanoceramics were prepared through an auto-ignited combustion method; thereafter, dense bulk ceramics were derived from them at relatively low temperatures. X-ray diffraction studies carried out on the nanoceramics as well as bulk ceramics suggest defect fluorite structure for RE = Dy, Y and Er whereas δ-phase rhombohedral structure for RE = Yb ceramics. Extent of oxide ion ordering and the structural variations due to the replacement of rare earth ions in the crystalline lattices were analyzed by Raman and infrared spectroscopy. UV–Visible and photoluminescence spectroscopy were employed to investigate the optical properties of the nanoceramics. Impedance spectroscopic studies carried out on the bulk ceramic materials show that the oxide ion hop** conduction mechanism in the bulk ceramics was affected by the structural factors and free mobile oxide ion concentration. Increase of total electrical conductivity of the dense ceramics with the increase of temperature was in accordance with the Arrhenius relation. Electrical conductivity of fluorites was higher than the δ-phase ceramics, which was attributed to the decreased activation energy and increased available number of mobile oxide ions in the fluorite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Z, Zhou G, Qin X, Yang Y, Zhang G, Menke Y, Wang S (2014) Transparent La2−xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering. J Alloys Compd 585:497–502

    Article  CAS  Google Scholar 

  2. Park JY, Yang HK (2017) Novel red-emitting Y4Zr3O12 :Eu3+ nanophosphor for latent fingerprint technology. Dyes Pigments 141:348–355

    Article  CAS  Google Scholar 

  3. Zhang J, Wang YQ, Valdez JA, Tang M, Sickafus KE (2011) Irradiation induced order–disorder phase transformation in A4Zr3O12 (A=Sc, Lu and Dy). J Nucl Mater 419:386–391

    Article  CAS  Google Scholar 

  4. Xuan C, Zhuang M, Yanbo L, Zhong D, Kangnan Z (2013) Performance of Dy2Zr2O7 thermal barrier coating in thermal-shock test. Rare Metal Mater Eng 42:1134–1138

    Article  Google Scholar 

  5. Zhong F, Shi L, Zhao J, Cai G, Zheng Y, **ao Y, Long J (2017) Ce incorporated pyrochlore Pr2Zr2O7 solid electrolytes for enhanced mild-temperature NO2 sensing. Ceram Int 43:11799–11806

    Article  CAS  Google Scholar 

  6. Zhong F, Zhao J, Shi L, **ao Y, Cai G, Zheng Y, Long J (2017) Alkaline-earth metals-doped pyrochlore Gd2Zr2O7 as oxygen conductors for improved no2 sensing performance. Sci Rep 7:4684

    Article  CAS  Google Scholar 

  7. **a XL, Liu ZG, Ouyang JH, Gao S, Liu XM (2011) Effect of Ce substitution for Zr on electrical property of fluorite-type Gd2Zr2O7. Solid State Sci 13:1328–1333

    Article  CAS  Google Scholar 

  8. Lee TA, Navrotsky A (2004) Enthalpy of formation of cubic yttria-stabilized hafnia. J Mater Res 19:1855–1861

    Article  CAS  Google Scholar 

  9. Yamamura H, Nishino H, Kakinuma K (2008) Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochore-type compositions (Ln=Yb, Y, Gd, Eu, Sm, Nd, La). J Phys Chem Solids 69:1711–1717

    Article  CAS  Google Scholar 

  10. Solomon S, George A, Thomas JK, John A (2015) Preparation, characterization, and ionic transport properties of nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) energy materials. J Electron Mater 44:28–37

    Article  CAS  Google Scholar 

  11. Rossell HJ (1976) Crystal structures of some fluorite-related M7O12 compounds. J Solid State Chem 19:103–111

    Article  CAS  Google Scholar 

  12. Sickafus KE, Grimes RW, Valdez JA, Cleave A, Tang M, Ishimaru M, Corish SM, Stanek CR, Uberuaga BP (2007) Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat Mater 6:217–223

    Article  CAS  Google Scholar 

  13. Scott HG (1977) The yttria–zirconia δ phase. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 33:281–282

    Article  Google Scholar 

  14. Stubican VS, Hink RC, Ray SP (1978) Phase equilibria and ordering in the system ZrO2-Y2O3. J Am Ceram Soc 61:17–21

    Article  CAS  Google Scholar 

  15. Thornber MR, Bevan DJM (1970) Mixed oxides of the type MO2 (fluorite)-M2O3. IV. Crystal structures of the high- and low-temperature forms of Zr3Yb4O12. J Solid State Chem 1:536–544

    Article  Google Scholar 

  16. Spiridonov FM, Popova LN, Popil’skii RY (1970) On the phase relations and the electrical conductivity in the system ZrO2-Sc2O3. J Solid State Chem 2:430–438

    Article  CAS  Google Scholar 

  17. Zhao M, Pan W, Li T, Huang M, Huang Y, Yang J, Li Z, Wan C (2018) Oxygen‐vacancy‐mediated microstructure and thermophysical properties in Zr3Ln4O12 for high‐temperature applications. J Am Ceram Soc 102:1961–1970

    Google Scholar 

  18. Singh V, Sivaramaiah G, Rao JL, Kim SH (2015) Investigation of new UV-emitting, Gd-activated Y4Zr3O12 phosphors prepared via combustion method. J Lumin 157:82–87

    Article  CAS  Google Scholar 

  19. Shlyakhtina AV, Belov DA, Stefanovich SY, Kolbanev IV, Karyagina OK, Egorov AV, Savilov SV, Shcherbakova LG (2011) δ-Phase to defect fluorite (order–disorder) transition in the R2O3–MO2 (R=Sc, Tm, Lu; M=Zr, Hf) systems. Mater Res Bull 46:512–517

    Article  CAS  Google Scholar 

  20. Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of röntgenle. Nachr Ges Wiss 96–100

  21. Lakiza SM, Lopato LM (2008) Phase diagram of the Al2O3–ZrO2–Er2O3 system. J Eur Ceram Soc 28:2389–2397

    Article  CAS  Google Scholar 

  22. Michel D, Jorba MPY, Collongues R (1976) Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures. J Raman Spectrosc 5:163–180

    Article  CAS  Google Scholar 

  23. Mandal BP, Banerji A, Sathe V, Deb SK, Tyagi AK (2007) Order–disorder transition in Nd2−yGdyZr2O7 pyrochlore solid solution: an X-ray diffraction and Raman spectroscopic study. J Solid State Chem 180:2643–2648

    Article  CAS  Google Scholar 

  24. Rejith RS, Thomas JK, Solomon S (2018) Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics 323:112–122

    Article  CAS  Google Scholar 

  25. Shlyakhtina AV, Shcherbakova LG (2012) New solid electrolytes of the pyrochlore family. Russ J Electrochem 48:1–25

    Article  CAS  Google Scholar 

  26. El-Wahabb EA, Bekheet A (2001) Effect of annealing on the optical properties of Ag33Sb31Se36 thin films. Appl Surf Sci 173:103–114

    Article  CAS  Google Scholar 

  27. Liu FS, Liu QL, Liang JK, Luo J, Yang LT, Song GB, Zhang Y, Wang LX, Yao JN, Rao GH (2005) Optical spectra of Ln3+(Nd3+, Sm3+, Dy3+, Ho3+, Er3+)-doped Y3GaO6. J Lumin 111:61–68

    Article  CAS  Google Scholar 

  28. Tauc J, Menth A (1972) States in the gap. J Non Cryst Solids 8:569–585

    Article  Google Scholar 

  29. Tang J, Cheng C, Chen Y, Huang Y (2014) Yellow–green upconversion photoluminescence in Yb3+, Ho3+ co-doped NaLa(MoO4)2 phosphor. J Alloys Compd 609:268–273

  30. Rejith RS, Thomas JK, Solomon S (2018) Structural, optical and ionic transport properties of Dy2-xLaxZr2O7 nanoceramics. J Alloys Compd 769:906–915

    Article  CAS  Google Scholar 

  31. Seeta Rama Raju G, Park JY, Jung HC, Moon B K, Jeong JH, Kim J H (2009) Luminescence properties of Dy3+:GdAlO3 nanopowder phosphors. Curr Appl Phys 9:e92–e95

    Article  Google Scholar 

  32. Zhang A, Lü M, Zhou G, Wang S, Zhou Y (2006) Combustion synthesis and photoluminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals. J Phys Chem Solids 67:2430–2434

    Article  CAS  Google Scholar 

  33. Babu P, Seo HJ, Kesavulu CR, Jang KH, Jayasankar CK (2009) Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses. J Lumin 129:444–448

    Article  CAS  Google Scholar 

  34. Sinclair DC (1995) Characterization of electro-materials using ac impedance spectroscopy. Bol La Soc Esp Ceram y Vidr 65:55–66

    Google Scholar 

  35. Thampi V, Padala PR, Radhakrishnan AN (2015) Induced oxygen vacancies and their effect on the structural and electrical properties of a fluorite-type CaZrO3–Gd2Zr2O7 system. New J Chem 39:1469–1476

    Article  CAS  Google Scholar 

  36. Zhong F, Zhao J, Shi L, Cai G, Zheng Y, Zheng Y, **ao Y, Jiang L (2019) Pyrochlore Pr2Zr1.95In0.05O7+δ oxygen conductors: Defect-induced electron transport and enhanced NO2 sensing performances. Electrochim Acta 293:338–347

    Article  CAS  Google Scholar 

  37. Tuller HL (1992) Mixed ionic-electronic conduction in a number of fluorite and pyrochlore compounds. Solid State Ionics 52:135–146

    Article  CAS  Google Scholar 

  38. Belous A, Kravchyk K (2007) Influence of the chemical composition on structural properties and electrical conductivity of Y−Ce−ZrO2. Chem Mater 19:5179–5184

    Article  CAS  Google Scholar 

  39. **a XL, Liu ZG, Ouyang JH (2011) Order–disorder transformation and enhanced oxide-ionic conductivity of (Sm1−xDyx)2Zr2O7 ceramics. J Power Sources 196:1840–1846

    Article  CAS  Google Scholar 

  40. Ray SP, Stubican VS, Cox DE (1980) Neutron diffraction investigation of Zr3Y4O12. Mater Res Bull 15:1419–1423

    Article  CAS  Google Scholar 

  41. Liu ZG, Ouyang JH, Zhou Y, **a XL (2009) Electrical conductivity of samarium–ytterbium zirconate ceramics. Electrochim Acta 54:3968–3971

    Article  CAS  Google Scholar 

  42. **a XL, Ouyang JH, Liu ZG (2009) Influence of CaO on structure and electrical conductivity of pyrochlore-type Sm2Zr2O7. J Power Sources 189:888–893

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rejith, R., Krishnan, R.R., John, A. et al. Structural optical and electrical properties of RE4Zr3O12 (RE = Dy, Y, Er, and Yb) nanoceramics. Ionics 25, 5091–5103 (2019). https://doi.org/10.1007/s11581-019-03097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03097-z

Keywords

Navigation