Log in

Enhanced permittivity and energy density of P(VDF-HFP)-based capacitor using core-shell structured BaTiO3@TiO2 fillers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As the electronic industry developed rapidly, greater demands are required on the performance of dielectric composites, such as high permittivity, low dielectric loss, and high-energy density. Improving the compatibility of fillers in polymer matrix and uniform distribution of the electric field could increase the permittivity of such composites. Therefore, BaTiO3 nanoparticles were coated by TiO2 sol to fabricate BaTiO3@TiO2 core-shell structured fillers in this paper. BaTiO3@TiO2 fillers with gradient permittivity were firstly modified by dopamine in order to disperse in the composites homogeneously and adhere to poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix tightly. At 1 kHz, the permittivity of the composite with 20 vol% BaTiO3@TiO2 was 32.15, obviously larger than that of pure P(VDF-HFP) (6.92), and the dielectric loss was just 0.052. Consequently, the discharged energy density of the composite was enhanced to 0.23 J/cm3 at 40 kV/mm, which was two times higher than that of pure P(VDF-HFP). This work provides a feasible approach to prepare high-performance dielectric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu B, Zhou X, Ren K, Neese B, Lin MR, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336. https://doi.org/10.1126/science.1127798

    Article  CAS  PubMed  Google Scholar 

  2. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365. https://doi.org/10.1002/adma.201301752

    Article  CAS  PubMed  Google Scholar 

  3. Ortiz RP, Facchetti A, Marks TJ (2010) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110:205–239. https://doi.org/10.1021/cr9001275

    Article  CAS  Google Scholar 

  4. Zhang D, Liu WW, Guo R, Zhou KC, Luo H (2018) High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Adv Sci 5:1700512. https://doi.org/10.1002/advs.201700512

    Article  CAS  Google Scholar 

  5. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040–18046. https://doi.org/10.1039/c4ta04051a

    Article  CAS  Google Scholar 

  6. **e B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, Li M, Jiang S (2017) Enhanced energy density of polymer nanocomposites at a lower electric field through aligned BaTiO3 nanowires. J Mater Chem A 5:6070–6078. https://doi.org/10.1039/c7ta00513j

    Article  CAS  Google Scholar 

  7. Zhang D, Liu W, Tang L, Zhou K, Luo H (2017) High performance capacitors via aligned TiO2 nanowire array. Appl Phys Lett 110:133902. https://doi.org/10.1063/1.4979407

    Article  CAS  Google Scholar 

  8. Pan Z, Yao L, Zhai J, Fu D, Shen B, Wang H (2017) High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl Mater Interfaces 9:4024–4033. https://doi.org/10.1021/acsami.6b13663

    Article  CAS  PubMed  Google Scholar 

  9. Luo H, Ma C, Zhou XF, Chen S, Zhang D (2017) Interfacial design in dielectric nanocomposite using liquid-crystalline polymers. Macromolecules 6:14740–14753. https://doi.org/10.1021/acs.macromol.7b00792

    Article  CAS  Google Scholar 

  10. Wang D, Zhou T, Zha JW, Zhao J, Shi CY, Dang ZM (2013) Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J Mater Chem A 1:6162–6168. https://doi.org/10.1039/c3ta10460e

    Article  CAS  Google Scholar 

  11. Lee H, Kim JR, Lanagan MJ, Trolier-McKinstry S, Randall CA (2013) High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr,Ti)O3. J Am Ceram Soc 96:1209–1213. https://doi.org/10.1111/jace.12184

    Article  CAS  Google Scholar 

  12. Johnsi M, Austin Suthanthiraraj S (2016) Electrochemical and structural properties of a polymer electrolyte system based on the effect of CeO2 nanofiller with PVDF-co-HFP for energy storage devices. Ionics 22(7):1075–1083. https://doi.org/10.1007/s11581-016-1637-x

    Article  CAS  Google Scholar 

  13. Feng Y, Li WL, Hou YF, Yu Y, Cao WP, Zhang TD, Fei WD (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260. https://doi.org/10.1039/c4tc02183e

    Article  CAS  Google Scholar 

  14. Hao YN, Wang XH, Bi K, Zhang JW, Huang YH, Wu LW, Zhao PY, Xu K, Lei M, Li LT (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56. https://doi.org/10.1016/j.nanoen.2016.11.008

    Article  CAS  Google Scholar 

  15. Yao L, Pan Z, Liu S, Zhai J, Chen HHD (2016) Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Appl Mater Interfaces 8:26343–26351. https://doi.org/10.1021/acsami.6b09265

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Huang X, Jiang P (2015) Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl Mater Interfaces 7:18017–18027. https://doi.org/10.1021/acsami.5b06480

    Article  CAS  PubMed  Google Scholar 

  17. Prateek TVK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  PubMed  Google Scholar 

  18. Luo SB, Shen YB, Yu SH, Wan YJ, Liao WH, Sun R, Wong CP (2017) Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ Sci 10:137–144. https://doi.org/10.1039/c6ee03190k

    Article  CAS  Google Scholar 

  19. Shen Y, Shen DS, Zhang X, Jiang JY, Dan ZK, Song Y, Lin YH, Li M, Nan CW (2016) High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. J Mater Chem A 4:8359–8365. https://doi.org/10.1039/c6ta02186g

    Article  CAS  Google Scholar 

  20. Vryonis O, Anastassopoulos DL, Vradis AA, Psarras GC (2016) Dielectric response and molecular dynamics in epoxy-BaSrTiO3 nanocomposites: effect of nanofiller loading. Polymer 95:82–90. https://doi.org/10.1016/j.polymer.2016.04.050

    Article  CAS  Google Scholar 

  21. Pan Z, Liu B, Zhai J, Yao L, Yang K, Shen B (2017) NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 40:587–595. https://doi.org/10.1016/j.nanoen.2017.09.004

    Article  CAS  Google Scholar 

  22. Zhang X, Shen Y, Xu B, Zhang QH, Gu L, Jiang JY, Ma J, Lin YH, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2061. https://doi.org/10.1002/adma.201503881

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Shen Y, Zhang QH, Gu L, Hu YH, Du JW, Lin YH, Nan CW (2015) Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv Mater 27:819–824. https://doi.org/10.1002/adma.201404101

    Article  CAS  PubMed  Google Scholar 

  24. Lin X, Hu P, Jia Z, Gao S (2016) Enhanced electric displacement induces large energy density in polymer nanocomposites containing core–shell structured BaTiO3@TiO2 nanofibers. J Mater Chem A 4:2314–2320. https://doi.org/10.1039/c5ta09547f

    Article  CAS  Google Scholar 

  25. Chen Q, Shen Y, Zhang S, Zhang QM (2015) Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 45:433–458. https://doi.org/10.1146/annurev-matsci-070214-021017

    Article  CAS  Google Scholar 

  26. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  27. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H (2015) Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 27:6658–6663. https://doi.org/10.1002/adma.201503186

    Article  CAS  PubMed  Google Scholar 

  28. Tang H, Lin Y, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3:451–456. https://doi.org/10.1002/aenm.201200808

    Article  CAS  Google Scholar 

  29. Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou KC (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Interfaces 7:8061–8069. https://doi.org/10.1021/acsami.5b00555

    Article  CAS  PubMed  Google Scholar 

  30. Peng S, Zeng Q, Yang X, Hu J, Qiu X, He J (2016) Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics. Sci Rep 6. https://doi.org/10.1038/srep38978

  31. Li WB, Zhou D, Pang LX (2017) Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett 110:132902. https://doi.org/10.1063/1.4979467

    Article  CAS  Google Scholar 

  32. Tang H, Zhou Z, Sodano HA (2014) Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl Mater Interfaces 6:5450–5455. https://doi.org/10.1021/am405038r

    Article  CAS  PubMed  Google Scholar 

  33. Lin MF, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578. https://doi.org/10.1039/c1ra00210d

    Article  CAS  Google Scholar 

  34. Wang J, Shi Z, Mao F, Chen S, Wang X (2017) Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl Mater Interfaces 9:1793–1800. https://doi.org/10.1021/acsami.6b12786

    Article  CAS  PubMed  Google Scholar 

  35. **isha B, Anilkumar K. M, Manoj M, Abhilash A, Pradeep V. S, Jayalekshmi S (2017) Poly(ethylene oxide)(PEO)-based, sodium ion-conducting‚ solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells. Ionics: 1–9. https://doi.org/10.1007/s11581-017-2332-2

    Article  Google Scholar 

  36. Pan Z, Yao L, Zhai J, Shen B, Wang H (2017) Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos Sci Technol 147:30–38. https://doi.org/10.1016/j.compscitech.2017.05.004

    Article  CAS  Google Scholar 

  37. Pan Z, Zhai J, Shen B (2017) Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J Mater Chem A 5:15217–15226. https://doi.org/10.1039/c7ta03846a

    Article  CAS  Google Scholar 

  38. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao HS, Ploehn HJ, Loye HC (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733. https://doi.org/10.3390/ma2041697

    Article  CAS  PubMed Central  Google Scholar 

  39. Yang K, Huang X, Huang Y, **e L, Jiang P (2013) Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327–2338. https://doi.org/10.1021/cm4010486

    Article  CAS  Google Scholar 

  40. Luo H, Zhang D, Wang L, Chen C, Zhou J, Zhou K (2015) Highly enhanced dielectric strength and energy storage density in hydantoin@ BaTiO3–P(VDF-HFP) composites with a sandwich-structure. RSC Adv 5:52809–52816. https://doi.org/10.1039/C5RA05748E

    Article  CAS  Google Scholar 

  41. Zhang D, Zhou XF, Roscow J, Zhou KC, Wang L, Luo H, Bowen CR (2017) Significantly enhanced energy storage density by modulating the aspect ratio of BaTiO3 nanofibers. Sci Rep 7:45179. https://doi.org/10.1038/srep45179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang D, Wu Z, Zhou XF, Wei AQ, Chen C, Luo H (2017) High energy density in P(VDF-HFP) nanocomposite with paraffin engineered BaTiO3 nanoparticles. Sensors Actuators A Phys 260:228–235. https://doi.org/10.1016/j.sna.2017.03.018

    Article  CAS  Google Scholar 

  43. Luo H, Chen C, Zhou K, Zhou X, Wu Z, Zhang D (2015) Enhancement of dielectric properties and energy storage density in poly(vinylidene fluoride-co-hexafluoropropylene) by relaxor ferroelectric ceramics. RSC Adv 5:68515–68522. https://doi.org/10.1039/c5ra11753d

    Article  CAS  Google Scholar 

  44. Luo H, Roscow J, Zhou XF, Chen S, Han XH, Zhou KC, Zhang D, Bowen CR (2017) Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J Mater Chem A 5:7091–7102. https://doi.org/10.1039/c7ta00136c

    Article  CAS  Google Scholar 

  45. Jiang C, Zhang D, Zhou K, Zhou X, Luo H, Abrahams I (2016) Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)(0.93)Ba0.07TiO3/P(VDF-HFP) composites induced by PVP-modified two-dimensional platelets. J Mater Chem A 4:18050–18059. https://doi.org/10.1039/c6ta06682h

    Article  CAS  Google Scholar 

  46. Andrews C, Lin Y, Sodano HA (2010) The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites. Smart Mater Struct 19:025018. https://doi.org/10.1088/0964-1726/19/2/025018

    Article  CAS  Google Scholar 

  47. Huang Q, Luo H, Chen C, Zhou X, Zhou K, Zhang D (2017) Enhanced energy density in P(VDF-HFP) nanocomposites with gradient dielectric fillers and interfacial polarization. J Alloys Compd 696:1220–1227. https://doi.org/10.1016/j.jallcom.2016.12.117

    Article  CAS  Google Scholar 

  48. Chao C, Liu JD, Wang JT, Zhang YW, Zhang B, Zhang YT, **ang X, Chen RF (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5:10559–10564. https://doi.org/10.1021/am4022973

    Article  CAS  PubMed  Google Scholar 

  49. Yue Q, Wang MH, Sun ZK, Wang C, Wang C, Deng YH, Zhao DY (2013) A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core-shell nanostructures. J Mater Chem B 1:6085–6093. https://doi.org/10.1039/c3tb21028f

    Article  CAS  Google Scholar 

  50. **e LY, Huang XY, Yang K, Li ST, Jiang PK (2014) “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2:5244–5251. https://doi.org/10.1039/c3ta15156e

    Article  CAS  Google Scholar 

  51. Tang H, Ehlert GJ, Lin Y, Sodano HA (2012) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12:84–90. https://doi.org/10.1021/nl203023k

    Article  CAS  PubMed  Google Scholar 

  52. Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125. https://doi.org/10.1016/j.carbon.2012.12.017

    Article  CAS  Google Scholar 

  53. Luo B, Wang X, Wang Y, Li L (2013) Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J Mater Chem A 2:510–519. https://doi.org/10.1039/c3ta14107a

    Article  CAS  Google Scholar 

  54. Yang K, Huang X, Zhu M, **e L, Tanaka T, Jiang P (2014) Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. ACS Appl Mater Interfaces 6:1812–1822. https://doi.org/10.1021/am4048267

    Article  CAS  PubMed  Google Scholar 

  55. Liu S, Zhai J (2015) Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A 3:1511–1517. https://doi.org/10.1039/c4ta04455j

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51672311); Science and Technology Project of Hunan Province, China (no. 2016WK2022); China Postdoctoral Science Foundation (2017M620353); and Supported by State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Luo, Zhuo Chen or Dou Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luo, H., Zhou, X. et al. Enhanced permittivity and energy density of P(VDF-HFP)-based capacitor using core-shell structured BaTiO3@TiO2 fillers. Ionics 24, 3975–3982 (2018). https://doi.org/10.1007/s11581-018-2546-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2546-y

Keywords

Navigation