Log in

Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For the first time, a sensitive and selective method for determination of docetaxel (as an anti-cancer drug) at gold nanoparticle-multiwall carbon nanotubes/glassy carbon electrode (Au-MWCNTs/GCE) was suggested using cyclic voltammetry and differential pulse anodic strip** voltammetry (DPASV) method. After the construction of the electrochemical sensor and optimization of the effective parameters such as pH, accumulation time, and potential, the sensor was applied for the determination of docetaxel in the range of 0.3–3.3 μmol L−1. The results show that Au-MWCNTs significantly catalyzed the redox reaction of docetaxel during electrochemical detection. The limit of detection was estimated to be 90 nmol L−1 based on 3Sb/m. The performed studies showed that Au-MWCNTs/GCE has a good selectivity, sensitivity, and reproducibility. This sensor was used to determine the docetaxel in real samples (human urine and human serum), and the obtained data illustrate that fabricated electrochemical sensor is promising for use in routine analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li P, Li S, Gu H, Lu Q, Jiang W, Pei X, Sun Y, Xu H, Wang G, Hao K (2018) The exposure-effect-toxicity correlation of docetaxel and magnesium isoglycyrrhizinate in non-small cell lung tumor-bearing mice. Biomed Pharmacother 97:1000–1010

    Article  CAS  Google Scholar 

  2. Kim DW, Yousaf AM, Li DX, Kim JO, Yong CS, Cho KH, Choi H-G (2017) Development of RP-HPLC method for simultaneous determination of docetaxel and curcumin in rat plasma: validation and stability. Asian J Pharmaceutical Sci 12(1):105–113

    Article  Google Scholar 

  3. Su C-Y, Liu J-J, Ho Y-S, Huang Y-Y, Chang VH-S, Liu D-Z, Chen L-C, Ho H-O, Sheu M-T (2017) Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (LsbMDDs) for improving the therapeutic efficacy and reducing systemic toxicity. European Journal of Pharmaceutics and Biopharmaceutics

  4. da Silva CBP, Julio IP, Donadel GE, Martins I (2016) UPLC-MS/MS method for simultaneous determination of cyclophosphamide, docetaxel, doxorubicin and 5-fluorouracil in surface samples. J Pharmacol Toxicol Methods 82:68–73

    Article  Google Scholar 

  5. Kuppens I, Van Maanen M, Rosing H, Schellens J, Beijnen J (2005) Quantitative analysis of docetaxel in human plasma using liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr 19(5):355–361

    Article  CAS  Google Scholar 

  6. López LZ, Pastor AA, Beitia JMA, Velilla JA, Deiró JG (2006) Determination of docetaxel and paclitaxel in human plasma by high-performance liquid chromatography: validation and application to clinical pharmacokinetic studies. Ther Drug Monit 28(2):199–205

    Article  Google Scholar 

  7. Zhao X, Bi K, Wang X, Xue X, He B, Cui Y, Liu Z, Wang D, Chen X (2013) A UFLC–MS/MS method coupled with one-step protein precipitation for determination of docetaxel in rat plasma: comparative pharmacokinetic study of modified nanostructured lipid carrier. J Pharm Biomed Anal 83:202–208

    Article  CAS  Google Scholar 

  8. Bitsch F, Ma W, Macdonald F, Nieder M, Shackleton CH (1993) Analysis of taxol and related diterpenoids from cell cultures by liquid chromatography-electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 615(2):273–280

    Article  CAS  Google Scholar 

  9. Poon G, Wade J, Bloomer J, Clarke S, Maltas J (1996) Rapid screening of taxol metabolites in human microsomes by liquid chromatography/electrospray ionization-mass spectrometry. Rapid Commun Mass Spectrom 10(10):1165–1168

    Article  CAS  Google Scholar 

  10. Hempel G, Lehmkuhl D, Krümpelmann S, Blaschke G, Boos J (1996) Determination of paclitaxel in biological fluids by micellar electrokinetic chromatography. J Chromatogr A 745(1–2):173–179

    Article  CAS  Google Scholar 

  11. Leu J-G, Chen B-X, Schiff PB, Erlanger BF (1993) Characterization of polyclonal and monoclonal anti-taxol antibodies and measurement of taxol in serum. Cancer Res 53(6):1388–1391

    CAS  PubMed  Google Scholar 

  12. Svojanovsky SR, Egodage KL, Wu J, Slavik M, Wilson GS (1999) High sensitivity ELISA determination of taxol in various human biological fluids. J Pharm Biomed Anal 20(3):549–555

    Article  CAS  Google Scholar 

  13. Ardiet CJ, Tranchand B, Zanetta S, Guillot A, Bernard E, Peguy M, Rebattu P, Droz J-P (1999) A sensitive docetaxel assay in plasma by solid-phase extraction and high performance liquid chromatography–UV detection: validation and suitability in phase I clinical trial pharmacokinetics. Investig New Drugs 17(4):325–333

    Article  CAS  Google Scholar 

  14. Sepehri Z, Bagheri H, Ranjbari E, Amiri-Aref M, Amidi S, Rouini MR, Hosseinzadeh Ardakani Y (2018) Simultaneous electrochemical determination of isoniazid and ethambutol using poly-melamine/electrodeposited gold nanoparticles modified pre-anodized glassy carbon electrode. Ionics, DOI 10.1007/s11581-017-2263-y

  15. Bagheri H, Khoshsafar H, Afkhami A, Amidi S (2016) Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J Chem 40:7102–7112

    Article  CAS  Google Scholar 

  16. Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix [6] arene based potentiometric sensor. J Mol Liq 195:65–68

    Article  CAS  Google Scholar 

  17. Gupta VK, Sethi B, Sharma RA, Agarwal S, Bharti A (2013) Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J Mol Liq 177:114–118

    Article  CAS  Google Scholar 

  18. Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). J Hazard Mater 183(1–3):402–409

    Article  CAS  Google Scholar 

  19. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B Chem 149(1):252–258

    Article  CAS  Google Scholar 

  20. Shiri S, Pajouheshpoor N, Khoshsafar H, Amidi S, Bagheri H (2017) An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots@CuFe2O4 nanocomposite modified carbon paste electrode. New J Chem 41:15564–15573

    Article  CAS  Google Scholar 

  21. Gupta VK, Jain AK, Maheshwari G, Lang H, Ishtaiwi Z (2006) Copper (II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors Actuators B Chem 117(1):99–106

    Article  CAS  Google Scholar 

  22. Gupta VK, Singh AK, Mehtab S, Gupta B (2006) A cobalt (II)-selective PVC membrane based on a Schiff base complex of N,N′-bis (salicylidene)-3, 4-diaminotoluene. Anal Chim Acta 566(1):5–10

    Article  CAS  Google Scholar 

  23. Bagheri H, Pajooheshpour N, Jamali B, Amidi S, Hajian A, Khoshsafar H (2017) A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4-SnO2-Gr ternary nanocomposite. Microchem J 131:120–129

    Article  CAS  Google Scholar 

  24. Gupta VK, Jain S, Chandra S (2003) Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Anal Chim Acta 486(2):199–207

    Article  CAS  Google Scholar 

  25. Gupta VK, Jain AK, Kumar P (2006) PVC-based membranes of N, N′-dibenzyl-1, 4, 10, 13-tetraoxa-7, 16-diazacyclooctadecane as Pb (II)-selective sensor. Sensors Actuators B Chem 120(1):259–265

    Article  CAS  Google Scholar 

  26. Prasad R, Gupta VK, Kumar A (2004) Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Anal Chim Acta 508(1):61–70

    Article  CAS  Google Scholar 

  27. Jain R, Gupta VK, Jadon N, Radhapyari K (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal Biochem 407(1):79–88

    Article  CAS  Google Scholar 

  28. Gupta VK, Chandra S, Mangla R (2002) Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim Acta 47(10):1579–1586

    Article  CAS  Google Scholar 

  29. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B Chem 186:451–460

    Article  CAS  Google Scholar 

  30. Bagheri H, Shirzadmehr A, Rezaei M, Khoshsafar H (2018) Determination of tramadol in pharmaceutical products and biological samples using a new nanocomposite carbon paste sensor based on decorated nanographene/tramadol-imprinted polymer nanoparticles/ionic liquid. Ionics 24:833–843

    Article  CAS  Google Scholar 

  31. Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66

    Article  CAS  Google Scholar 

  32. Bagheri H, Afkhami A, Khoshsafar H, Hajian A, Shahriyari A (2017) Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosens Bioelectron 89:829–836

    Article  CAS  Google Scholar 

  33. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772

    Article  CAS  Google Scholar 

  34. Nekoueian K, Amiri M, Sillanpaa M (2017) Carbon paste electrode with Au/Pd/MWCNT nanocomposite for nanomolar determination of timolol. Int J Electrochem Sci 12(2):1612–1624

    Article  CAS  Google Scholar 

  35. Sahoo S, Satpati A, Reddy A (2015) Electrodeposited Bi-Au nanocomposite modified carbon paste electrode for the simultaneous determination of copper and mercury. RSC Adv 5(33):25794–25800

    Article  CAS  Google Scholar 

  36. Afzali D, Zarei S, Fathirad F, Mostafavi A (2014) Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater Sci Eng C 43:97–101

    Article  CAS  Google Scholar 

  37. Afkhami A, Soltani-Felehgari F, Madrakian T (2013) Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochim Acta 103:125–133

    Article  CAS  Google Scholar 

  38. Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M (2013) Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chem Phys Lett 574:83–88

    Article  CAS  Google Scholar 

  39. Zhang Z, Pfefferle L, Haller GL (2015) Characterization of functional groups on oxidized multi-wall carbon nanotubes by potentiometric titration. Catal Today 249:23–29

    Article  CAS  Google Scholar 

  40. Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75(20):5413–5421

    Article  CAS  Google Scholar 

  41. Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532

    Article  CAS  Google Scholar 

  42. Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F et al (2016) Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 112:125–131

    Article  Google Scholar 

  43. Fu C, Li M, Li H, Li C, guo Wu X, Yang B (2017) Fabrication of Au nanoparticle/TiO2 hybrid films for photoelectrocatalytic degradation of methyl orange. J Alloys Compd 692:727–733

    Article  CAS  Google Scholar 

  44. Lee M, Kim D (2016) Non-enzymatic carbohydrates detection based on Au modified MWCNT field-effect transistor. Mater Lett 169:257–261

    Article  CAS  Google Scholar 

  45. Zeinali H, Bagheri H, Monsef-Khoshhesab Z, Khoshsafar H, Hajian A (2017) Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater Sci Eng C 71:386–394

    Article  CAS  Google Scholar 

  46. Gowda JI, Nandibewoor ST (2014) Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J Pharmaceutical Sci 9:42–49

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Office of the Payame Noor University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bagheri.

Electronic supplementary material

ESM 1

(PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najari, S., Bagheri, H., Monsef-Khoshhesab, Z. et al. Electrochemical sensor based on gold nanoparticle-multiwall carbon nanotube nanocomposite for the sensitive determination of docetaxel as an anticancer drug. Ionics 24, 3209–3219 (2018). https://doi.org/10.1007/s11581-018-2517-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2517-3

Keywords

Navigation