Log in

Design and synthesis of highly stable poly(tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) ion-exchange membrane for vanadium redox flow battery (VRFB)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium redox flow battery (VRFB) is a promising technology for large-scale renewable energy storage. Design of ion-exchange membrane (IEM) with desired properties like low-cost, mechanically chemically stable, low vanadium ion permeability and high proton conductivity is one of the major challenges. Here, we report the design and synthesis of novel poly(tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) asymmetric IEM using a simple brush coating method. XRD results confirmed the presence of α-ZrP crystalline phase onto the top layer of the membrane. Excellent mechanical strength was observed with burst pressure of 3.22 × 105 N m−2. Oxidative stability of membrane in Fenton’s reagent was much better than Nafion-115. Vanadium ion (V4+) permeability of the membrane was more than three times lower than that of Nafion-115. Single-cell VRFB with PTFE-ZrP membrane showed ∼80% energy efficiency below 30 mA cm−2. Very high columbic efficiency ∼100% of VRFB with PTFE-ZrP membrane confirmed little contamination of electrolyte due to cross-mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armaroli N, Balzani V (2011) Towards an electricity-powered world. Energy Environ Sci 4:3193–3222

    Article  Google Scholar 

  2. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986

    Article  CAS  Google Scholar 

  3. ** J, Li Z, Yu L, Yin B, Wang L, Liu L et al (2015) Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery. J Power Sources 285:195–204

    Article  CAS  Google Scholar 

  4. Sum E, Rychcik M, Skyllas-Kazacos M (1985) Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery. J Power Sources 16:85–95

    Article  CAS  Google Scholar 

  5. Sum E, Skyllas-Kazacos M (1985) A study of the V (II)/V (III) redox couple for redox flow cell applications. J Power Sources 15:179–190

    Article  CAS  Google Scholar 

  6. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40

    Article  CAS  Google Scholar 

  7. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP et al (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  8. Ding C, Zhang H, Li X, Liu T, **ng F (2013) Vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4:1281–1294

    Article  CAS  Google Scholar 

  9. Zhang H, Zhang H, Li X, Mai Z, Wei W (2012) Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ Sci 5:6299–6303

    Article  CAS  Google Scholar 

  10. Zhang H, Zhang H, Zhang F, Li X, Li Y, Vankelecom I (2013) Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy Environ Sci 6:776–781

    Article  CAS  Google Scholar 

  11. Mohammadi T, Kazacos MS (1997) Evaluation of the chemical stability of some membranes in vanadium solution. J Appl Electrochem 27:153–160

    Article  CAS  Google Scholar 

  12. Yuan Z, Duan Y, Zhang H, Li X, Zhang H, Vankelecom I (2016) Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy Environ Sci 9:441–447

    Article  CAS  Google Scholar 

  13. Kim S, Yan J, Schwenzer B, Zhang J, Li L, Liu J et al (2010) Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochem Commun 12:1650–1653

    Article  CAS  Google Scholar 

  14. Sun C, Chen J, Zhang H, Han X, Luo Q (2010) Investigations on transfer of water and vanadium ions across nafion membrane in an operating vanadium redox flow battery. J Power Sources 195:890–897

    Article  CAS  Google Scholar 

  15. Zeng J, Jiang C, Wang Y, Chen J, Zhu S, Zhao B et al (2008) Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochem Commun 10:372–375

    Article  CAS  Google Scholar 

  16. Teng X, Zhao Y, ** J, Wu Z, Qiu X, Chen L (2009) Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J Membr Sci 341:149–154

    Article  CAS  Google Scholar 

  17. Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev MaterRes 33:129–154

    Article  CAS  Google Scholar 

  18. Chieng SC, Kazacos M, Skyllas-Kazacos M (1992) Modification of Daramic, microporous separator, for redox flow battery applications. J Membr Sci 75:81–91

    Article  CAS  Google Scholar 

  19. Mohammadi T, Skyllas-Kazacos M (1995) Preparation of sulfonated composite membrane for vanadium redox flow battery applications. J Membr Sci 107:35–45

    Article  CAS  Google Scholar 

  20. Mohammadi T, Skyllas-Kazacos M (1995) Characterisation of novel composite membrane for redox flow battery applications. J Membr Sci 98:77–87

    Article  CAS  Google Scholar 

  21. Wei X, Nie Z, Luo Q, Li B, Sprenkle V, Wang W (2013) Polyvinyl chloride/silica Nanoporous composite separator for all-vanadium redox flow battery applications. J Electrochem Soc 160:A1215–A12A8

    Article  CAS  Google Scholar 

  22. Dai W, Shen Y, Li Z, Yu L, ** J, Qiu X (2014) SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. J Mater Chem A 2:12423–12432

    Article  CAS  Google Scholar 

  23. Wang N, Yu J, Zhou Z, Fang D, Liu S, Liu Y (2013) SPPEK/TPA composite membrane as a separator of vanadium redox flow battery. J Membr Sci 437:114–121

    Article  CAS  Google Scholar 

  24. Mai Z, Zhang H, Li X, **ao S, Zhang H (2011) Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. J Power Sources 196:5737–5741

    Article  CAS  Google Scholar 

  25. Seepana MM, Pandey J, Shukla A (2012) Synthesis and characterization of PWA based inorganic ion-exchange membrane. Sep Purif Technol 98:193–198

    Article  CAS  Google Scholar 

  26. Miyatake K, Zhou H, Matsuo T, Uchida H, Watanabe M (2004) Proton conductive polyimide electrolytes containing trifluoromethyl groups: synthesis, properties, and DMFC performance. Macromolecules 37:4961–4966

    Article  CAS  Google Scholar 

  27. Luo X, Lu Z, ** J, Wu Z, Zhu W, Chen L (2005) Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries. J Phys Chem B 109:20310–20314

    Article  CAS  Google Scholar 

  28. Chen D, Hickner MA (2013) V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries. Phys Chem Chem Phys 15:11299–11305

    Article  CAS  Google Scholar 

  29. Moosavi K, Setayeshi S, Maragheh MG, Javadahmadi S, Kardan MR, Nosrati S (2009) Synthesis and ion-exchange properties of inorganic ion exchanger zirconium phosphate. J Appl Sci 9:2180–2184

    Article  CAS  Google Scholar 

  30. Zhang R, Hu Y, Li B, Chen Z, Fan W (2007) Studies on the preparation and structure of polyacrylamide/α-zirconium phosphate nanocomposites. J Mater Sci 42:5641–5646

    Article  CAS  Google Scholar 

  31. Tanaka Y. Chapter 2 Membrane Property Measurements. In: Yoshinobu T, editor. Membr Sci Technol: Elsevier; 2007. p. 17–36.

  32. Jiang B, Wu L, Yu L, Qiu X, ** J (2016) A comparative study of nafion series membranes for vanadium redox flow batteries. J Membr Sci 510:18–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seepana, M.M., Pandey, J. & Shukla, A. Design and synthesis of highly stable poly(tetrafluoroethylene)-zirconium phosphate (PTFE-ZrP) ion-exchange membrane for vanadium redox flow battery (VRFB). Ionics 23, 1471–1480 (2017). https://doi.org/10.1007/s11581-016-1967-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1967-8

Keywords

Navigation