Log in

Cathode materials Sr1−x Ho x CoO3−δ (SHC, x ≤ 0.3) for IT-SOFC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cathode materials consisting of Sr1−x Ho x CoO3−δ (SHC, x ≤ 0.3) were synthesized by solid-state reaction for intermediate temperature solid oxide fuel cell (IT-SOFC). The crystal structures, total electrical conductivity, thermogravimetric analysis (TGA), thermal expansion coefficient (TEC), area-specific resistance (ASR), and cell performance were investigated. X-ray powder diffraction (XRD) shows the presence of two structural phases in the series belonging to Pm-3m for Sr0.9Ho0.1CoO3−δ and I4/mmm for Sr0.8Ho0.2CoO3−δ and Sr0.7Ho0.3CoO3−δ . Electrical conductivity measurements show that the conductivity is all higher than 182 S cm−1 from 170 to 800 °C. TGA and thermal expansion measurement shows that oxygen vacancies and TEC decrease with increasing x at high temperature. The TECs are influenced by the concentration of oxygen vacancies and the transition of the Co(III) ions from a low-spin to a high-spin state. AC impedance measurements in symmetrical cells with La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) as an electrolyte show that the ASR and activation energy increase with increasing x. Sr0.9Ho0.1CoO3−δ exhibits the best cathode characteristics with a maximum power density of 839 mW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu BW, Zhang Y, Zhang LM (2009) Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cell. Int J Hydrogen Energ 34:1008–1014

    Article  CAS  Google Scholar 

  2. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313

    Article  CAS  Google Scholar 

  3. Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    Article  CAS  Google Scholar 

  4. Shao ZP, Haile SM, Han J, Ronney PD, Zhan ZL, Barnett SA (2005) A thermally self-sustained micro solid-oxide fuel cell stack with high power density. Nature 435:795–798

    Article  CAS  Google Scholar 

  5. Lee KT, Manthiram A (2005) Characterization of Nd0.6Sr0.4Co1−y Fe y O3−δ (0 ≤ y ≤ 0.5) cathode materials for intermediate temperature solid oxide fuel cells. Solid State Ionics 176:1521–1527

    Article  CAS  Google Scholar 

  6. Colomer MT, Steele BCH, Kilner JA (2002) Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3−δ perovskite as cathode material for ITSOFCs. Solid State Ionics 147:41–48

    Article  CAS  Google Scholar 

  7. Dutta A, Mukhopadhyay J, Basu R (2009) Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells. J Eur Ceram Soc 29:2003–2011

    Article  CAS  Google Scholar 

  8. Parka KJ, Lee CB, Bae JM, Yoo YS (2001) Structural and electrochemical properties of Pr0.3Sr0.7Co0.3Fe0.7O3−δ cathode for IT-SOFC. Int J Hydrogen Energ 34:6852–6860

    Article  Google Scholar 

  9. Skinner SJ (2001) Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int J Inorg Mater 3:113–121

    Article  CAS  Google Scholar 

  10. Ivers-Tiffee E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21:1805–1811

    Article  CAS  Google Scholar 

  11. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  12. Haritha M, Suresh MB, Johnson R (2012) Synthesis and evaluation of thermal, electrical, and electrochemical properties of Ba0.5Sr0.5Co0.04Zn0.16Fe0.8O3–δ as a novel cathode material for IT-SOFC applications. Ionics 18:891–898

    Article  CAS  Google Scholar 

  13. Cheng Y, Zhou QJ, Li WD, Wei T, Li ZP, An DM, Tong XQ, Ji ZH, Han X (2015) Ba0.9Sr0.1Co0.9In0.1O3–δ perovskite as cathode material for IT-SOFC. J Alloy Compd 641:234–237

    Article  CAS  Google Scholar 

  14. Yu SC, He SC, Chen H, Guo LC (2015) Effect of calcinations temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 280:581–587

    Article  CAS  Google Scholar 

  15. Zhou QJ, Wei T, Li ZP, An DM, Tong XQ, Ji ZH, Wang WB, Lu H, Sun LY, Zhang ZY (2015) Synthesis and characterization of BaBi0.05Co0.8Nb0.15O3–δ as a potential IT-SOFCs cathode material. J Alloy Compd 627:320–323

    Article  CAS  Google Scholar 

  16. Guo YM, Liu Y, Cai R, Chen DJ, Ran R, Shao ZP (2015) Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3–δ electrode on oxygen-ionic conducting electrolyte. Int J Hydrogen Energ 37:14492–14500

    Article  Google Scholar 

  17. **ao J, Xu Q, Chen M, Zhao K, Kim BH (2015) Improved overall properties in La1–x Ca x Co0.04Fe0.8Cr0.2O3–δ as cathode for intermediate temperature solid oxide fuel cells. Ionics 21:2805–2814

    Article  CAS  Google Scholar 

  18. Yuan N, Liu XJ, Meng FZ, Zhou DF, Meng J (2015) First-principles study of La2CoMnO6: a promising cathode material for intermediate-temperature solid oxide fuel cells due to intrinsic Co-Mn cation disorder. Ionics 21:1675–1681

    Article  CAS  Google Scholar 

  19. Istomin SY, Drozhzhin OA, Svensson G, Antipov EV (2004) Synthesis and characterization of Sr1−x Ln x CoO3−δ , Ln=Y, Sm-Tm, 0.1 ≤ x ≤ 0.5. Solid State Sci 6:539–546

    Article  CAS  Google Scholar 

  20. Napolsky PS, Drozhzhin OA, Istomin SY, Kazakov SM, Antipov EV, Galeeva AV, Gippius AA, Svensson G, Abakumov AM, Van Tendeloo G (2012) Structure and high-temperature properties of the (Sr, Ca, Y)(Co, Mn)O3−y perovskites—perspective cathode materials for IT-SOFC. J Solid State Chem 192:186–194

    Article  CAS  Google Scholar 

  21. Istomin SY, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russ Chem Rev 82:686–700

    Article  Google Scholar 

  22. Cascos V, Martínez-Coronado R, Alonso JA, Fernández-Díaz MT (2014) Visualization by neutron diffraction of 2D oxygen diffusion in the Sr0.7Ho0.3CoO3–δ cathode for solid-oxide fuel cells. ACS Appl Mater Inter 6:9194–9200

    Article  CAS  Google Scholar 

  23. Cascos V, Troncoso L, Alonso JA (2015) New families of Mn+-doped SrCo1–x M x O3–δ perovskites performing as cathodes in solid-oxide fuel cells. Int J Hydrogen Energ 40:11333–11341

    Article  CAS  Google Scholar 

  24. Liu T, Li Y, Goodenough JB (2012) Sr0.7Ho0.3CoO3−δ as a potential cathode material for intermediate-temperature solid oxide fuel cells. J Power Sources 199:161–164

    Article  CAS  Google Scholar 

  25. Cherepanov VA, Gavrilova LY, Volkova NE, Aksenova TV (2012) Crystal structure and oxygen nonstoichiometry of the Ho x Sr1–x CoO3–δ . J Mater Res 27:2030–2034

    Article  CAS  Google Scholar 

  26. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  27. Gellings PJ, Bouwmeester HJM (1997) The CRC handbook of solid state electrochemistry. CRC Press, New York

    Google Scholar 

  28. Zhao H, Shen W, Zhu Z, Li X, Wang Z (2008) Preparation and properties of Ba x Sr1−x Co y Fe1−y O3−δ cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 182:503–509

    Article  CAS  Google Scholar 

  29. Park S, Choi S, Shin J, Kim G (2009) Tradeoff optimization of electrochemical performance and thermal expansion for Co-based cathode material for intermediate-temperature solid oxide fuel cells. Electrochim Acta 125:683–690

    Article  Google Scholar 

  30. Raccah PM, Goodenough JB (1967) First-order localized-electron collective-electron transition in LaCoO3. Phys Rev 155:932–943

    Article  CAS  Google Scholar 

  31. Meng FC, **a T, Wang JP, Shi Z, Lian J, Zhao H, Bassat JM, Grenier JC (2014) Evaluation of layered perovskites YBa1–x Sr0x Co2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energ 39:4531–4543

    Article  CAS  Google Scholar 

  32. Kim JH, Cassidy M, Irvine JTS, Bae J (2010) Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5+δ cathodes for intermediate temperature-operating solid oxide fuel cell. Chem Mater 22:883–892

    Article  CAS  Google Scholar 

  33. Horita T, Yamaji K, Sakai N, Yokokawa H, Weber A, Ivers-Tiffee E (2001) Electrode reaction of La1–x Sr x CoO3–δ cathodes on La0.8Sr0.2Ga0.8Mg0.2O3–δ electrolyte in solid oxide fuel cells. J Electrochem Soc 148:A456–A462

    Article  CAS  Google Scholar 

  34. Lin YB, Barnett SA (2008) La0.9Sr0.1Ga0.8Mg0.2O3–δ -La0.6Sr0.4Co0.2Fe0.8O3–θ composite cathodes for intermediate-temperature solid oxide fuel cells. Solid State Ionics 179:420–427

    Article  CAS  Google Scholar 

  35. Kim YN, Kim JH, Manthiram A (2010) Effect of Fe substitution on the structure and properties of LnBaCo2–x Fe x O5+δ (Ln=Nd and Gd) cathodes. J Power Sources 195:6411–6419

    Article  CAS  Google Scholar 

  36. Pang SL, Jiang XN, Li XN, Wang Q, Su ZX (2012) Characteration of Ba-deficient PrBa1–x Co2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 204:53–59

    Article  CAS  Google Scholar 

  37. Kim JH, Manthiram A (2008) LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155:B385–B390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Prof. John B Goodenough for his support and guidance. This work is financially supported by the National Natural Science Foundation of China (51374055 and 50904016) and the Fundamental Research Funds for the Central Universities of China (N130502003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, L. & Yu, JK. Cathode materials Sr1−x Ho x CoO3−δ (SHC, x ≤ 0.3) for IT-SOFC. Ionics 22, 853–858 (2016). https://doi.org/10.1007/s11581-015-1614-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1614-9

Keywords

Navigation