Log in

Performance study of amperometric sensor for detecting NO2 at ppb concentration level

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The conductivity of sodium super ionic conductor (NASICON, Na1+xZr2SixP3-xO12, 0 < x < 3) materials was evaluated through alternating current impedance spectroscopy measurement, and NASICON-based amperometric sensors were developed using sodium nitrite and molybdenum oxide-doped NaNO2 electrode materials. These sensors were then used to measure NO2 concentration in the parts per billion level (125 to 1000 ppb) in an atmosphere containing 16 % oxygen. The current response signal was studied by varying the applied voltage from −150 to −400 mV for a range of MoO3 concentrations at 110, 130, 150, and 170 °C. It was found that the sensitivity, response time, and degree of linearity of the NO2 sensor signal were influenced by the applied voltage, working temperature, and level of MoO3 do**. On the basis of the results obtained, it is concluded that an applied voltage of −300 mV, temperature of 150 °C, and a 1 mol% MoO3-doped NaNO2 electrode represent the optimal test parameters for ppb-level NO2 detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shimizu Y, Nishi H, Suzuki H, Maeda K (2000) Solid-state NOx sensor combined with NASICON and Pb-Ru-based pyrochlore-type oxide electrode. Sensors Actuators B 65:141–143

    Article  CAS  Google Scholar 

  2. Miura N, Koga T, Nakatou M, Elumalai P, Hasei M (2006) Electrochemical NOx sensors based on stabilized zirconia: comparison of sensing performances of mixed-potential-type and impedance metric NOx sensors. J Electroceram 17:979–986

    Article  CAS  Google Scholar 

  3. Elumalai P, Zosel J, Guth U, Miura N (2009) NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature. Ionics 15:405–411

    Article  CAS  Google Scholar 

  4. Cho HC, Takase S, Song JH, Shimizu Y (2013) Sensing behavior of solid-state impedancemetric NOx sensor using solid electrolyte transducer and oxide receptor. Sensors Actuators B Chem 187:94–98

    Article  CAS  Google Scholar 

  5. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10:5469–5502

    Article  CAS  Google Scholar 

  6. Ahmad MZ, Chang J, Ahmad MS, Waclawik ER, Wlodarshi W (2013) Non-aqueous synthesis of hexagonal ZnO nanopyramids: gas sensing properties. Sensors Actuators B Chem 177:286–294

    Article  CAS  Google Scholar 

  7. Jiang C, Zhang G, Wu Y, Li L, Shi K (2012) Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature. Cryst Eng Comm 14:2739–2747

    Article  CAS  Google Scholar 

  8. Miura N, Lu G, Yamazoe N (1998) High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sensors Actuators B Chem 52:169–178

    Article  CAS  Google Scholar 

  9. Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837

    Article  CAS  Google Scholar 

  10. Yao S, Stetter JR (2004) Modification of NASICON solid electrolyte for NOx measurements. J Electrochem Soc 151:H75–H80

    Article  CAS  Google Scholar 

  11. Stetter JR, Li J (2008) Amperometric gas sensors—a review. Chem Rev 108:352–366

    Article  CAS  Google Scholar 

  12. Miura N, Ono M, Shimanoe K, Yamazoe N (1998) J Appl Electrochem 28:863–865

    Article  CAS  Google Scholar 

  13. Liang X, He Y, Liu F, Wang B, Zhong T, Quan B (2007) Solid-state potentiometric H2S sensor combining NASICON with Pr6O11-doped SnO2 electrode. Sensors Actuators B 125:544–549

    Article  CAS  Google Scholar 

  14. Miura N, Wang J, Elumalai P, Ueda T, Terada D, Hasei M (2007) Improving NO2 sensitivity by adding WO3 during processing of NiO sensing-electrode of mixed-potential-type zirconia-based sensor. J Electrochem Soc 154:J246–J252

    Article  CAS  Google Scholar 

  15. Novoselova LY (2014) Mo and MoO3 powders: structure and resistance to CO. J Alloys Compd 615:784–791

    Article  CAS  Google Scholar 

  16. Kharitonov SA (2005) Influence of different therapeutic strategies on exhaled NO and lung inflammation in asthma and COPD. Vasc Pharmacol 43:371–378

    Article  CAS  Google Scholar 

  17. Högman M, Holmkvist T, Wegener T, Emtner M, Andersson M, Hedenström H, Meriläinen P (2002) Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med 96:24–30

    Article  Google Scholar 

  18. Högman M, Meriläinen P (2007) Extended NO analysis in asthma. J Breath Res 1:024001

    Article  Google Scholar 

  19. Ford H, Suri S, Nilforoushan D, Manolson M, Gong SG (2014) Nitric oxide in human gingival crevicular fluid after orthodontic force application. Arch Oral Biol 59:1211–1216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, B., Jiang, D., Feng, T. et al. Performance study of amperometric sensor for detecting NO2 at ppb concentration level. Ionics 21, 2647–2654 (2015). https://doi.org/10.1007/s11581-015-1419-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1419-x

Keywords

Navigation