Log in

Control of absence seizures induced by the pathways connected to SRN in corticothalamic system

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The cerebral cortex, thalamus and basal ganglia together form an important network in the brain, which is closely related to several nerve diseases, such as parkinson disease, epilepsy seizure and so on. Absence seizure can be characterized by 2–4 Hz oscillatory activity, and it can be induced by abnormal interactions between the cerebral cortex and thalamus. Many experimental results have also shown that basal ganglia are a key neural structure, which closely links the corticothalamic system in the brain. Presently, we use a corticothalamic-basal ganglia model to study which pathways in corticothalamic system can induce absence seizures and how these oscillatory activities can be controlled by projections from the substantia nigra pars reticulata (SNr) to the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of the thalamus. By tuning the projection strength of the pathway “Excitatory pyramidal cortex-SRN”, ”SRN-Excitatory pyramidal cortex” and “SRN–TRN” respectively, different firing states including absence seizures can appear. This indicates that absence seizures can be induced by tuning the connection strength of the considered pathway. In addition, typical absence epilepsy seizure state “spike-and-slow wave discharges” can be controlled by adjusting the activation level of the SNr as the pathways SNr–SRN and SNr–TRN open independently or together. Our results emphasize the importance of basal ganglia in controlling absence seizures in the corticothalamic system, and can provide a potential idea for the clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Biraben A, Semah F et al (2004) PET evidence for a role of the basal ganglia in patients with ring chromosome 20 epilepsy. Neurology 63:73–77

    Article  CAS  PubMed  Google Scholar 

  • Breakspear M, Roberts JA et al (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16:1296–1313

    Article  CAS  PubMed  Google Scholar 

  • Chen MM, Guo DQ et al (2014) Bidirectional control of absence seizures by the Basal Ganglia: a computational evidence. PLoS Comput Biol 10(3):e1003495

    Article  PubMed Central  PubMed  Google Scholar 

  • Coenen AM, van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33:635–655

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3:371–382

    Article  CAS  PubMed  Google Scholar 

  • Deransart C, Depaulis A (2002) The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord Suppl 3:S61–72

    Google Scholar 

  • Deransart C, Vercueil L et al (1998) The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32:213–223

    Article  CAS  PubMed  Google Scholar 

  • Gatev P, Wichmann T (2008) Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cereb Cortex 19(6):1330–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Gulcebi MI, Ketenci S et al (2012) Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Res Bull 87:312–318

    Article  PubMed  Google Scholar 

  • Humphries MD, Gurney K (2012) Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. Eur J Neurosci 36:2240–2251

    Article  PubMed  Google Scholar 

  • Jasper HH, Kershman J (1941) Electroencephalographic classification of the epilepsies. Arch Neurol Psychiatry 45:903–943

    Article  Google Scholar 

  • Kase D, Inoue T et al (2012) Roles of the subthalamic nucleus and subthalamic HCN channels in absence seizures. J Neurophysiol 107:393–406

    Article  CAS  PubMed  Google Scholar 

  • Marten F, Rodrigues S et al (2009) Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Phil Trans R Soc A 367:1145–1161

    Article  PubMed  Google Scholar 

  • Massimo A (2012) A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53(5):779–789

    Article  Google Scholar 

  • Park C, Rubchinsky LL (2012) Potential Mechanisms for Imperfect Synchronization in Parkinsonian basal Ggnglia. PLOS ONE 7(12):e51530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paz JT, Bryant AS et al (2011) A new mode of corticothalamic transmission revealed in the \(Gria4^{-/-}\) model of absence epilepsy. Nat Neurosci 14(9):1167–1173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paz JT, Chavez M et al (2007) Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci 27:929–941

    Article  CAS  PubMed  Google Scholar 

  • Paz JT, Deniau JM et al (2005) Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges. J Neurosci 25(8):2092–2101

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Robinson PA (2008) Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. J Theor Biol 253:189–201

    Article  PubMed  Google Scholar 

  • Robinson PA, Rennie CJ et al (1998) Steady states and global dynamics of electrical activity in the cerebral cortex. Phys Rev E 58:3557–3571

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ et al (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63:021903

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ et al (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65:041924

    Article  CAS  Google Scholar 

  • Robinson PA, Rennie CJ et al (2003) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23:53–72

    Article  Google Scholar 

  • Rodrigues S, Barton D et al (2009) Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci 27(3):507–526

    Article  PubMed  Google Scholar 

  • Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123:299–336

    Article  CAS  PubMed  Google Scholar 

  • van Albada SJ, Gray RT et al (2009) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol 257:664–688

    Article  PubMed  Google Scholar 

  • van Albada SJ, Robinson PA (2009) Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and parkinsonian states. J Theor Biol 257:642–663

    Article  PubMed  Google Scholar 

  • van Luijtelaar G, Sitnikova E (2006) Global and focal aspects of absence epilepsy: the contribution of genetic models. Neurosci Biobehav Rev 30:983–1003

    Article  PubMed  Google Scholar 

  • Volman V, Perc M, Bazhenov M (2011) Gap junctions and epileptic seizures: two sides of the same coin? PLoS One 6(5):e20572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (Grant Nos. 11325208, 11172017 and 61201278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Wang.

Appendix

Appendix

Unless otherwise noted, we use these parameter values for simulations as follows (Chen et al. 2014; Marten et al. 2009; Massimo 2012; Paz et al. 2007; Roberts and Robinson 2008; Rodrigues et al. 2009; van Albada et al. 2009; van Albada and Robinson 2009).

Parameter

Mean

Value

\(Q_{e}^{max},Q_{i}^{max}\)

Cortical maximum firing rate

250 Hz

\(Q_{d_{1}}^{max},Q_{d_{2}}^{max}\)

Striatum maximum firing rate

65 Hz

\(Q_{p_{1}}^{max}\)

SNr maximum firing rate

250 Hz

\(Q_{p_{2}}^{max}\)

GPe maximum firing rate

300 Hz

\(Q_{\zeta }^{max}\)

STN maximum firing rate

500 Hz

\(Q_{s}^{max}\)

SRN maximum firing rate

250 Hz

\(Q_{r}^{max}\)

TRN maximum firing rate

250 Hz

\(\theta _{e},\theta _{i}\)

Mean firing threshold of cortical populations

15 mV

\(\theta _{d_{1}},\theta _{d_{2}}\)

Mean firing threshold of striatum

19 mV

\(\theta _{p_{1}}\)

Mean firing threshold of SNr

10 mV

\(\theta _{p_{2}}\)

Mean firing threshold of GPe

9 mV

\(\theta _{\zeta }\)

Mean firing threshold of STN

10 mV

\(\theta _{s}\)

Mean firing threshold of SRN

15 mV

\(\theta _{r}\)

Mean firing threshold of TRN

15 mV

\(\gamma _{e}\)

Cortical dam** rate

100 Hz

\(\tau\)

Time delay due to slow synaptic kinetics of \(GABA_{B}\)

50 ms

\(\alpha\)

Synaptodendritic decay time constant

50 \({\rm s}^{-1}\)

\(\beta\)

Synaptodendritic rise time constant

200 \({\rm s}^{-1}\)

\(\sigma\)

Threshold variability of firing rate

6 mV

\(\phi _{n}\)

Nonspecific subthalamic input onto SRN

2 mV s

Coupling strength

Source

Target

Value (mV s)

\(\nu _{ee}\)

Excitatory pyramidal neurons

Excitatory pyramidal neurons

1

\(\nu _{ei}\)

Inhibitory interneurons

Excitatory pyramidal neurons

−1.8

\(\nu _{re}\)

Excitatory pyramidal neurons

TRN

0.05

\(\nu _{rs}\)

SRN

TRN

0.5

\(\nu _{sr}^{A,B}\)

TRN

SRN

−0.48

\(\nu _{d_{1}e}\)

Excitatory pyramidal neurons

Striatal D1 neurons

1

\(\nu _{d_{1}d_{1}}\)

Striatal D1 neurons

Striatal D1 neurons

−0.2

\(\nu _{d_{1}s}\)

SRN

Striatal D1 neurons

0.1

\(\nu _{d_{2}e}\)

Excitatory pyramidal neurons

Striatal D2 neurons

0.7

\(\nu _{d_{2}d_{2}}\)

Striatal D2 neurons

Striatal D2 neurons

−0.3

\(\nu _{d_{2}s}\)

SRN

Striatal D2 neurons

0.05

\(\nu _{p_{1}d_{1}}\)

Striatal D1 neurons

SNr

−0.1

\(\nu _{p_{1}p_{2}}\)

GPe

SNr

−0.03

\(\nu _{p_{1}\zeta }\)

STN

SNr

0–0.6

\(\nu _{p_{2}d_{2}}\)

Striatal D2 neurons

GPe

−0.3

\(\nu _{p_{2}p_{2}}\)

GPe

GPe

−0.075

\(\nu _{p_{2}\zeta }\)

STN

GPe

0.45

\(\nu _{\zeta p_{2}}\)

GPe

STN

−0.04

\(\nu _{es}\)

STN

Excitatory pyramidal neurons

1.8

\(\nu _{se}\)

Excitatory pyramidal neurons

SRN

2.2

\(\nu _{\zeta e}\)

Excitatory pyramidal neurons

STN

0.1

\(\nu _{sp_{1}}\)

SNr

SRN

−0.035

\(\nu _{rp_{1}}\)

SNr

TRN

−0.035

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Guo, D. & Wang, Q. Control of absence seizures induced by the pathways connected to SRN in corticothalamic system. Cogn Neurodyn 9, 279–289 (2015). https://doi.org/10.1007/s11571-014-9321-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-014-9321-1

Keywords

Navigation