Log in

On the stability of the swelling porous elastic soils with fluid saturation and Gurtin–Pipkin thermal law

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The present paper is devoted to studying the well-posedness and exponential stability of the one-dimensional system in the linear isothermal theory of swelling porous elastic soils with fluid saturation and Gurtin–Pipkin thermal law. For the well-posedness, we apply the well-known Hille–Yosida theorem of semigroup theory. To prove exponential stability without assuming that the wave speeds are the same, we use the energy method which consists of constructing a Lyapunov functional equivalent to the system’s total energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29(2), 209–244 (1976)

    Article  MathSciNet  Google Scholar 

  2. Apalara, T.A.: General stability result of swelling porous elastic soils with a viscoelastic dam**. Z. Fur Angew. Math. Phys 71, 200 (2020)

    Article  MathSciNet  Google Scholar 

  3. Apalara, T.A., Almutairi, O.B.: Well-posedness and exponential stability of swelling porous with Gurtin–Pipkin Thermoelasticity. Mathematics 10(23), 4498 (2022)

    Article  Google Scholar 

  4. Apalara, T.A., Soufyane, A., Afilal, M., Alahyane, M.: A general stability result for swelling porous elastic media with nonlinear dam**. Appl. Anal. 510(2), 126006 (2022)

    Article  Google Scholar 

  5. Apalara, T.A., Yusuf, M.O., Salami, B.A.: On well-posedness and exponential decay of swelling porous thermoelastic media with second sound. J. Math. Anal. Appl. 504(2), 125429 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  Google Scholar 

  7. Bofill, F., Quintanilla, R.: Anti-plane shear deformations of swelling porous elastic soils. Int. J. Eng. Sci. 41(8), 801–816 (2003)

    Article  MathSciNet  Google Scholar 

  8. Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Matemat. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  9. Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin–Pipkin thermal law. J. Differential Equ. 257(2), 523–548 (2014)

    Article  MathSciNet  Google Scholar 

  10. Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32(8), 1337–1349 (1994)

    Article  MathSciNet  Google Scholar 

  11. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194(1), 221–251 (2009)

    Article  MathSciNet  Google Scholar 

  12. Giorgi, C., Pata, V., Marzocchi, A.: Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA Nonlinear Differential Equ. Appl. 5(3), 333–354 (1998)

    Article  MathSciNet  Google Scholar 

  13. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31(2), 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  14. Karaborni, S., Smit, B., Heidug, W., Urai, J., Van Oort, E.: The swelling of clays: molecular simulations of the hydration of montmorillonite. Science 271(5252), 1102–1104 (1996)

    Article  Google Scholar 

  15. Keddi, A., Messaoudi, S.A., Alahyane, M.: Well-posedness and stability results for a swelling porous-heat system of second sound. J. Therm. Stresses 44(12), 1427–1440 (2021)

    Article  Google Scholar 

  16. Klika, V.: A guide through available mixture theories for applications. Crit. Rev. Solid State Mater. Sci. 39(2), 154–174 (2014)

    Article  Google Scholar 

  17. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, vol. 398. Chapman & Hall, London (1999)

    Google Scholar 

  18. Quintanilla, R.: Exponential stability of solutions of swelling porous elastic soils. Meccanica 39(2), 139–145 (2004)

    Article  MathSciNet  Google Scholar 

  19. Quintanilla, R.: Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation. J. Comput. Appl. Math. 145(2), 525–533 (2002)

    Article  MathSciNet  Google Scholar 

  20. Quintanilla, R.: On the linear problem of swelling porous elastic soils. J. Math. Anal. Appl. 269(1), 50–72 (2002)

    Article  MathSciNet  Google Scholar 

  21. Ramos, A.J.A., Freitas, M.M., Almeida, D.S., Jr., Noé, A.S., Santos, M.D.: Stability results for elastic porous media swelling with nonlinear dam**. J. Math. Phys. 61(10), 101505 (2020)

    Article  MathSciNet  Google Scholar 

  22. Rivera, J.E.M., Racke, R.: Mildly dissipative nonlinear Timoshenko systems- global existence and exponential stability. J. Math. Anal. Appl. 276(1), 248–278 (2002)

    Article  MathSciNet  Google Scholar 

  23. Santos, M.L., Júnior, D.A., Rivera, J.M.: The stability number of the Timoshenko system with second sound. J. Differential Equ. 253(9), 2715–2733 (2012)

    Article  MathSciNet  Google Scholar 

  24. Timoshenko, S.: On the correction for shear of a differential equation for transverse vibrations of prismatic bars. Phil. Mag. Ser. 6, 41 (1921)

    Google Scholar 

  25. Wang, J.M., Guo, B.Z.: On the stability of swelling porous elastic soils with fluid saturation by one internal dam**. IMA J. Appl. Math. 71(4), 565–582 (2006)

    Article  MathSciNet  Google Scholar 

  26. Wilcox, R.D.: Surface area approach key to borehole stability. Oil Gas J. 88(9), 66–80 (1990)

    Google Scholar 

  27. Wray, W.K., Addison, M.B., Struzyk, K.M.: So Your Home Is Built on Expansive Soils: A Discussion on How Expansive Soils Affect Buildings. American Society of Civil Engineers, Reston (2019)

    Book  Google Scholar 

  28. Zhang, Q.: Stability analysis of an interactive system of wave equation and heat equation with memory. Z. Angew. Math. Phys. 65(5), 905–923 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Funding

A. J. A. Ramos thanks the CNPq for financial support through Grant 310729/2019-0. M. M. Freitas thanks the CNPq for financial support through Grant 313081/2021-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Nonato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, A.J.A., Nonato, C.A., Raposo, C.A. et al. On the stability of the swelling porous elastic soils with fluid saturation and Gurtin–Pipkin thermal law. Ann Univ Ferrara 70, 493–514 (2024). https://doi.org/10.1007/s11565-023-00486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-023-00486-1

Keywords

Mathematics Subject Classification

Navigation