Log in

Fully faithful Fourier-Mukai functors and generic vanishing

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The aim of this mainly expository note is to point out that, given an Fourier-Mukai functor, the condition making it fully faithful is an instance of generic vanishing. We test this point of view on some fairly classical examples, including the strong simplicity criterion of Bondal and Orlov, the standard flip and the Mukai flop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that in loc cit condition (i) is stated in a different way, namely \(R^j\Phi ^{Y\rightarrow Z}_{{\mathcal {E}}^\vee \otimes p_Z^*\omega _Z}({\mathcal {F}}^\vee \otimes \omega _Y)=0\) for \(j>\dim Y\). This is equivalent to (i) by duality and base-change. Indeed by duality (i) is equivalent to the fact the loci \(V^j_{{\mathcal {P}}^\vee \otimes p_Z^*\omega _Z}(Y, {\mathcal {F}}^\vee \otimes \omega _Y)\) are empty for all \(j>\dim Y\), which is in turn equivalent (by an easy application of base-change) to the vanishing of the sheaves \(R^j\Phi ^{ Y\rightarrow Z}_{{\mathcal {E}}^\vee \otimes p_Z^*\omega _Z}({\mathcal {F}}^\vee \otimes \omega _Y)=0\) for all \(j>\dim Y\).

  2. Condition (c) is more usually expressed in the dual way, namely \(H^i(Y,F\otimes \Phi _{{\mathcal {P}}[\dim Z]}^{Z\rightarrow Y}(A^\vee ))=0\) for \(i\ne 0\) (see e.e. [21] Cor. 3.11(b)). By duality and Serre vanishing it is easily seen that the two formulations are equivalent.

  3. In fact it is well known that the sheaf \({{\widehat{\omega _Y}}}\) has the “base-change property”, namely, in the present case, the natural map \(tor_0({{\widehat{\omega _Y}}},k_{(x,x\prime )})\rightarrow H^{\dim Y}(Y,\omega _Y\otimes \Phi _{{\mathcal {E}}^\vee \boxtimes _Y{\mathcal {E}}}^{X\times X\rightarrow Y}(k_{(x,x^\prime )}))\) is an isomorphism. This is proved as follows: condition (a) can be stated as \(V^i_{{\mathcal {E}}\boxtimes _Y{\mathcal {E}}^\vee }(Y, OO_Y)=\emptyset \) for \(i>0\) or, dually, \(V^i_{{\mathcal {E}}^\vee \boxtimes _Y{\mathcal {E}}}(\omega _Y)=\emptyset \) for \(i>\dim Y\). By a well known base change argument (see e.g. [17] 1.3 or [21], proof of Lemma 3.6) this implies that \({{\widehat{\omega _Y}}}\) has the base change property.

  4. This is also the key ingredient in the proof of the equivalence between (b) and (c) of Theorem 2.3.

  5. Note that this implies that \(\Phi _{\mathcal {P}}^{X\rightarrow {\widehat{X}}}\) it is in fact an equivalence. Moreover, since \({\mathcal {P}}^\vee =(-id,id)^*=(id,-id)^*{\mathcal {P}}\), this proves also that

    $$\begin{aligned} \Phi _{\mathcal {P}}^{X\rightarrow {\widehat{X}}}\circ \Phi _{\mathcal {P}}^{{\widehat{X}}\rightarrow X}=(-id)^*[-\dim X] \end{aligned}$$

    i.e. the theorem of Mukai in [14].

References

  1. Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties. ar**v:alg-geom/9506012

  2. Bridgeland, T.: Equivalences of triangulated categories and Fourier-Mukai functors. Bull. Lond. Math. Soc. 31, 25–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cautis, S.: Equivalences and stratified flops. Compos. Math. 148, 185–208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Green, M., Lazarsfeld, R.: Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville. Invent. Math. 90, 389–407 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green, M., Lazarsfeld, R.: Higher obstructions to deforming cohomology groups of line bundles. J. Am. Math. Soc. 1, 87–103 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hacon, Ch.: A derived category approach to generic vanishing. J. Reine Angew. Math. 575, 173–187 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Hernández, D., Ruipérez, A.C., López Martín, F., de Salas, Sancho: Fourier-Mukai transform for Gorenstein schemes. Adv. Math. 211, 594–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry. Clarendon, Oxford (2006)

    Book  MATH  Google Scholar 

  9. Kashiwara, M.: t-structures on the derived categories of holonomic \({\cal D}\)-modules and coherent \({\cal O}\)-modules. Moscow Math. J. 4, 847–868 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Kawamata, Y.: D-equivalence and K-equivalence. J. Differ. Geom. 61, 147–171 (2002)

    Article  MATH  Google Scholar 

  11. Kawamata, Y.: Derived equivalence for stratified Mukai flop on G(2,4), in Mirror symmetry V, AMS/IP Stud. Adv. Math. Am. Math. Soc. 38, 285–294 (2006)

  12. López-Martín, A.C.: Fully faithfulness criteria, appendix to: M. Melo, A. Rapagnetta, F. Viviani, Fourier-Mukai and autoduality for compactified jacobians, I, (version 2). ar**v:1207.7233v2 [alg-geom]

  13. Markman, E.: Brill-Noether duality for moduli spaces of sheaves on K3 surfaces. J. Algebraic Geom. 10, 623–694 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Mukai, S.: Duality between D(\(X\)) and D(\({\hat{X}}\)) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Namikawa, Y.: Mukai flops and derived categories. J. Reine Angew. Math. 560, 65–76 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Namikawa, Y.: Mukai flops and derived categories II, in Algebraic structures and moduli spaces, CRM Proc. Lecture Notes. Am. Math. Soc. 38, 149–175 (2004)

  17. Pareschi, G.: Basic results on irregular varieties via Fourier-Mukai methods. In: Current developments in algebraic geometry, vol. 59, pp. 379–403. MSRI Publications, Cambridge University Press, Cambridge (2012)

  18. Pareschi, G., Popa, M.: Regularity on abelian varieties I. J. Am. Math. Soc. 16, 285–302 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pareschi, G., Popa, M.: Generic vanishing and minimal cohomology classes on abelian varieties. Math. Ann. 340(1), 209–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pareschi, G., Popa, M.: Strong generic vanishing and a higher-dimensional Castelnuovo-de Franchis inequality. Duke Math. J. 150, 269–285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pareschi, G., Popa, M.: GV-sheaves, Fourier-Mukai transform, and generic vanishing. Am. J. Math. 133, 235–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Popa, M.: Generic vanishing filtrations and perverse objects in derived categories of coherent sheaves. In: Derived categories in algebraic geometry, pp. 251–277. European Mathematical Society (2012), Tokyo (2011)

  23. Popa, M., Schnell, Ch.: Generic vanishing theory via mixed Hodge modules. Forum Math. Sigma 1, 1–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pareschi.

Additional information

In memory of Alexandru T. Lascu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pareschi, G. Fully faithful Fourier-Mukai functors and generic vanishing . Ann Univ Ferrara 63, 185–199 (2017). https://doi.org/10.1007/s11565-016-0256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-016-0256-9

Keywords

Mathematics Subject Classification

Navigation