Log in

Comparative Transcriptomic Analysis of Different Potato Cultivars to Elucidate the Molecular Mechanisms Underlying Differences in Cold Resistance

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Amongst the various abiotic stresses, cold is an essential factor that limits crop productivity worldwide. Low temperature affects the growth, development, and distribution of agronomic species around the world. To improve the understanding of the physiological and genetic properties and functions affecting potato cold tolerance, in this study, transcriptomic analysis was performed on two potato cultivars (HZ88 and LS6) with different cold tolerances that were treated at low temperature for 0, 1, 3, and 6 h. Transcriptomic analysis showed large differences between HZ88 and LS6 regarding the expression levels of low-temperature responsive genes. Notably, HZ88 responds to low-temperature stress via genes primarily enriched in plant hormone signal transduction, cutin, suberine, and wax biosynthesis, and photosynthesis-antenna proteins. By comparison, the most significant low-temperature responsive genes of LS6 were determined to be enriched in plant-pathogen interactions, zeatin biosynthesis, and plant hormone signal transduction. The cuticle, a horny waxy layer, is an important protective barrier formed by plants to resist biotic and abiotic stresses during the long-term ecological adaptation. This may be a physical defence employed by HZ88 to strengthen its cold resistance. In the LS6 cultivar, potatoes tend to cope with cold stress by strengthening their immune system and regulating hormone signal transduction. In addition, hormone pathway-related genes such as ABA, ICE-CBF signalling pathway-related genes, and genes encoding transcription factors all exhibited different expression patterns between HZ88 and LS6. To the best of our knowledge, this study is the first to elucidate the genetic mechanisms underlying the differences in cold resistance between the cold-tolerant LS6 and cold-sensitive HZ88, thereby establishing the foundation for further analysis and genetic breeding of potatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials are presented in the main paper and additional supporting file.

Abbreviations

ABA :

Abscisic acid

DEGs :

Differentially expressed genes

RNA-seq :

RNA sequencing

ICE :

Inducer of CBF expression

CBF :

C-repeat binding factor

COR :

Cold regulated

LTI :

Low-temperature induction

KIN :

Cold noninducible

DREB :

Dehydration-responsive element-binding protein

GO :

Gene ontology

BP :

Biological process

MF :

Molecular function

SA :

Salicylic acid

GA :

Gibberellin

JA :

Jasmonic acid

CK :

Cytokinin

TFs :

Transcription factors

References

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24. https://doi.org/10.1104/pp.108.120725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw JE, Ramsay G (2009) Chapter 1 - potato origin and production. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press, San Diego, pp 1–26

  • Chen L, Yang Y, Liu C, Zheng Y, Xu M, Wu N, Sheng J, Shen L (2015) Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment. Biochem Biophys Res Commun 464(3):962–968. https://doi.org/10.1016/j.bbrc.2015.07.085

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M (2019) A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 14(7):e0219837. https://doi.org/10.1371/journal.pone.0219837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahal K, Li X-Q, Tai H, Creelman A, Bizimungu B (2019) Improving potato stress tolerance and tuber yield under a climate change scenario—a current overview. Front Plant Sci 10:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong C, Ma Y, Wisniewski M, Cheng Z-M (2017) Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response. Environ Exp Bot 142:1–14

    Article  CAS  Google Scholar 

  • Dong Y, Tang M, Huang Z, Song J, Xu J, Ahammed GJ, Yu J, Zhou Y (2022) The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. Plant J 111(2):440–456. https://doi.org/10.1111/tpj.15807

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, **ao J, **ong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83(4–5):475–488. https://doi.org/10.1007/s11103-013-0103-7

    Article  CAS  PubMed  Google Scholar 

  • Erpen L, Devi HS, Grosser JW, Dutt M (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult (PCTOC) 132(1):1–25

    Article  CAS  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7(1):1–11

    Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, Guo Z (2019) Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 685:96–105. https://doi.org/10.1016/j.gene.2018.10.066

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Ren Y, Tang Z, Shi W, Zhou M (2019) Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ 7:e8190. https://doi.org/10.7717/peerj.8190

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Liu C, **ao W, Wang R, Zhang L, Guan S, Zhang S, Cai L, Liu H, Huang X (2019b) Comparative transcriptome profile analysis of anther development in reproductive stage of rice in cold region under cold stress. Plant Mol Biol Report 37(3):129–145

    Article  CAS  Google Scholar 

  • Hawkes JG (1992) History of the potato. In: The potato crop. Springer, pp 1–12

  • Humplik JF, Lazar D, Furst T, Husickova A, Hybl M, Spichal L (2015) Automated integrative high-throughput phenoty** of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11(1):20. https://doi.org/10.1186/s13007-015-0063-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansky S, ** L, **e K, **e C, Spooner D (2009) Potato production and breeding in China. Potato Res 52(1):57

    Article  Google Scholar 

  • Jiang C, Zhang H, Ren J, Dong J, Zhao X, Wang X, Wang J, Zhong C, Zhao S, Liu X, Gao S, Yu H (2020) Comparative transcriptome-based mining and expression profiling of transcription factors related to cold tolerance in peanut. Int J Mol Sci 21(6):1921. https://doi.org/10.3390/ijms21061921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS (2011) The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnol Biotechnol Equip 25(3):2433–2442

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Htwe MPS, N, Fujita Y, Sekita S, Shinozaki K, (2015) Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195(4):737–751. https://doi.org/10.1111/j.1469-8137.2012.04239.x

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Leon-Kloosterziel KM, Schwartz SH, Zeevaart JA (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem 36(1–2):83–89

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK, Verma RK, Shrivastava S, Ghimire O, Pushkar S, Rao MV, Kumar TS, Chinnusamy V (2020) ABA receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms. J Exp Bot

  • Lafta AM, Lorenzen JH (1995) Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol 109(2):637–643. https://doi.org/10.1104/pp.109.2.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB 96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J 82(6):962–977

    Article  CAS  PubMed  Google Scholar 

  • Li C, Sun Y, Li J, Zhang T, Zhou F, Song Q, Liu Y, Brestic M, Chen TH, Yang X (2022) ScCBF1 plays a stronger role in cold, salt and drought tolerance than StCBF1 in potato (Solanum tuberosum). J Plant Physiol 278:153806. https://doi.org/10.1016/j.jplph.2022.153806

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10(4):545–559. https://doi.org/10.1016/j.molp.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  • Luo DL, Ba LJ, Shan W, Kuang JF, Lu WJ, Chen JY (2017) Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. J Agric Food Chem 65(18):3627–3635. https://doi.org/10.1021/acs.jafc.7b00915

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K (1819) Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819(2):97–103

    Article  Google Scholar 

  • Oufir M, Legay S, Nicot N, Van Moer K, Hoffmann L, Renaut J, Hausman J-F, Evers D (2008) Gene expression in potato during cold exposure: changes in carbohydrate and polyamine metabolisms. Plant Sci 175(6):839–852

    Article  CAS  Google Scholar 

  • Park MR, Yun KY, Mohanty B, Herath V, Xu F, Wijaya E, Bajic VB, Yun SJ, De Los Reyes BG (2010) Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ 33(12):2209–2230. https://doi.org/10.1111/j.1365-3040.2010.02221.x

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Wu Q, Teng L, Tang F, Pi Z, Shen S (2015) Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biol 15(1):1–14

    Article  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31(4):393–406. https://doi.org/10.1111/j.1365-3040.2008.01776.x

    Article  CAS  PubMed  Google Scholar 

  • Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T (2019) Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC Plant Biol 19(1):352

    Article  PubMed  PubMed Central  Google Scholar 

  • Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5(4):201–207. https://doi.org/10.1007/s10142-005-0141-6

    Article  CAS  PubMed  Google Scholar 

  • Robison JD, Yamasaki Y, Randall SK (2019) The ethylene signaling pathway negatively impacts CBF/DREB-regulated cold response in soybean (Glycine max). Front Plant Sci 10:121. https://doi.org/10.3389/fpls.2019.00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175. https://doi.org/10.1111/j.1472-765X.2007.02282.x

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Ma Q, Yin W, Liu T, Song Y, Chen Y, Song L, Sun H, Hu S, Liu T, Jiang R, Lv D, Song B, Wang J, Liu X (2022) The transcription factor StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. J Exp Bot 73(14):4968–4980. https://doi.org/10.1093/jxb/erac171

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Ding Y, Yang S (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23(7):623–637. https://doi.org/10.1016/j.tplants.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  • Song C, Wu M, Zhou Y, Gong Z, Yu W, Zhang Y, Yang Z (2022) NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. Hortic Res 9:uhac039. https://doi.org/10.1093/hr/uhac039

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51(2):308–321

    Article  CAS  PubMed  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153(1):145–158. https://doi.org/10.1104/pp.110.153015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L-T, Li J-W, Liu D-Q, Zhai Y, Zhang H-J, Li X-W, Zhang Q-L, Wang Y, Wang Q-Y (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Tian X, **e J, Yu J (2020) Study on signal induced expression of cold tolerance in edible lily in alpine environment. Appl Ecology Environ Res 18(2):2687–2701

    Article  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317. https://doi.org/10.1016/j.tplants.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta 239(2):255–266. https://doi.org/10.1007/s00425-013-1985-y

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97(21):11632–11637. https://doi.org/10.1073/pnas.190309197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma RK, Santosh Kumar VV, Yadav SK, Pushkar S, Rao MV, Chinnusamy V (2019) Overexpression of ABA receptor PYL10 gene confers drought and cold tolerance to Indica rice. Front Plant Sci 10:1488. https://doi.org/10.3389/fpls.2019.01488

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Yang Z, Wu M, Wang W, Wang Y, Nie S (2022) Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato. Plant Sci 320:111281. https://doi.org/10.1016/j.plantsci.2022.111281

    Article  CAS  PubMed  Google Scholar 

  • Wang DZ, ** YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF (2017) Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry (Mosc) 82(10):1103–1117. https://doi.org/10.1134/S0006297917100030

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL (2015) Gm WRKY 27 interacts with Gm MYB 174 to reduce expression of Gm NAC 29 for stress tolerance in soybean plants. Plant J 83(2):224–236

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yao L, Hao X, Li N, Wang Y, Ding C, Lei L, Qian W, Zeng J, Yang Y (2019) Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environ Exp Bot 160:45–58

    Article  CAS  Google Scholar 

  • Wang P, Lu S, Zhang X, Hyden B, Qin L, Liu L, Bai Y, Han Y, Wen Z, Xu J, Cao H, Chen H (2021) Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Sci 304:110739. https://doi.org/10.1016/j.plantsci.2020.110739

    Article  CAS  PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8(7):749–771. https://doi.org/10.1111/j.1467-7652.2010.00536.x

    Article  CAS  PubMed  Google Scholar 

  • **ong Y, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224(4):878–888. https://doi.org/10.1007/s00425-006-0273-5

    Article  CAS  PubMed  Google Scholar 

  • Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R (2010) Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit Rev Biotechnol 30(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Experimental procedures to identify cis-acting elements and their DNA-binding proteins. Trends Plant Sci 2(10):88–94

    Article  Google Scholar 

  • Yang HJ, Guo HC (2017) Comprehensive evalution of cold resistence of potato varieties. Molecular Plant Breeding 15(2):716–724

    Google Scholar 

  • Yang Y, Liu J, Zhou X, Liu S, Zhuang Y (2020) Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant. PeerJ 8:e8777. https://doi.org/10.7717/peerj.8777

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Cang J, Lu Q, Fan B, Xu Q, Li W, Wang X (2020) ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signaling Behav 15(8):1780403

    Article  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133(2):910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai S, Wang W, Ding X, Guo Z, Bai L, Wang S (2018) Identification of genes from the ICE–CBF–COR pathway under cold stress in Aegilops-Triticum composite group and the evolution analysis with those from Triticeae. Physiol Mol Biol Plants 24(2):211–229

    Article  PubMed  Google Scholar 

  • Zhang L, Zhao T, Sun X, Wang Y, Du C, Zhu Z, Gichuki DK, Wang Q, Li S, **n H (2019) Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Mol Biol 100(1–2):95–110. https://doi.org/10.1007/s11103-019-00846-6

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Wang Y, Liu G, Li H (2010) Cloning and characterization of a pathogenesis-related gene (ThPR10) from Tamarix hispida. Acta Biol Crac Ser Bot 52(2)

  • Zhou L, Wang NN, Gong SY, Lu R, Li Y, Li XB (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320. https://doi.org/10.1016/j.plaphy.2015.08.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Special Fund of National Modern Agricultural Technical System (No. CARS-09-15P). This funding body had no role in the design of the study, sample collection, analysis or interpretation of data, and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and H.G. conceived and designed the experiments. H.Y. and M.C. collected plant materials and conducted the experiments. H.Y., M.C., C.K., and H.G. performed bioinformatics analyses and interpreted the results. H.Y. wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huachun Guo.

Ethics declarations

Ethics Approval and Consent to Participate

There are no ethical issues involved.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 753 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, M., Kou, C. et al. Comparative Transcriptomic Analysis of Different Potato Cultivars to Elucidate the Molecular Mechanisms Underlying Differences in Cold Resistance. Potato Res. 67, 545–564 (2024). https://doi.org/10.1007/s11540-023-09657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-023-09657-1

Keywords

Navigation