Log in

Comparing Global and Spatial Composite Measures of Neighborhood Socioeconomic Status Across US Counties

  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

Area-level neighborhood socioeconomic status (NSES) is often measured without consideration of spatial autocorrelation and variation. In this paper, we compared a non-spatial NSES measure to a spatial NSES measure for counties in the USA using principal component analysis and geographically weighted principal component analysis (GWPCA), respectively. We assessed spatial variation in the loadings using a Monte Carlo randomization test. The results indicated that there was statistically significant variation (p = 0.004) in the loadings of the spatial index. The variability of the census variables explained by the spatial index ranged from 60 to 90%. We found that the first geographically weighted principal component explained the most variability in the census variables in counties in the Northeast and the West, and the least variability in counties in the Midwest. We also tested the two measures by assessing the associations with county-level diabetes prevalence using data from the CDC’s US Diabetes Surveillance System. While associations of the two NSES measures with diabetes did not differ for this application, the descriptive results suggest that it might be important to consider a spatial index over a global index when constructing national county measures of NSES. The spatial approach may be useful in identifying what factors drive the socioeconomic status of a county and how they vary across counties. Furthermore, we offer suggestions on how a GWPCA–based NSES index may be replicated for smaller geographic scopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braveman PA, Cubbin C, Egerter S, et al. Socioeconomic status in health research. JAMA. 2005;294(22):2879. https://doi.org/10.1001/jama.294.22.2879.

    Article  CAS  PubMed  Google Scholar 

  2. Diez-Roux AV, Merkin SS, Arnett D, et al. Neighborhood of residence and incidence of coronary heart disease. N Engl J Med. 2001;345(2):99–106. https://doi.org/10.1056/NEJM200107123450205.

    Article  CAS  PubMed  Google Scholar 

  3. Chaikiat Å, Li X, Bennet L, Sundquist K. Neighborhood deprivation and inequities in coronary heart disease among patients with diabetes mellitus: a multilevel study of 334,000 patients. Health place. 2012;18(4):877–82. https://doi.org/10.1016/j.healthplace.2012.03.003.

    Article  PubMed  Google Scholar 

  4. Major JM, Doubeni CA, Freedman ND, et al. Neighborhood socioeconomic deprivation and mortality: NIH-AARP diet and health study. Ross JS, ed. PLoS One. 2010;5(11):e15538. https://doi.org/10.1371/journal.pone.0015538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zierler S, Krieger N, Tang Y, et al. Economic deprivation and AIDS incidence in Massachusetts. Am J Public Health. 2000;90(7):1064–73. https://doi.org/10.2105/AJPH.90.7.1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pickett KE. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Heal. 2001;55(2):111–22. https://doi.org/10.1136/jech.55.2.111.

    Article  CAS  Google Scholar 

  7. James SA. Primordial prevention of cardiovascular disease among African-Americans: a social epidemiological perspective. Prev Med (Baltim). 1999;29(6):S84–9. https://doi.org/10.1006/pmed.1998.0453.

    Article  CAS  Google Scholar 

  8. Haan M, Kaplan GA, Camacho T. Poverty and health prospective evidence from the Alameda County study. Am J Epidemiol. 1987;125(6):989–98. https://doi.org/10.1093/oxfordjournals.aje.a114637.

    Article  CAS  PubMed  Google Scholar 

  9. Hirsch AG, Carson AP, Lee NL, et al. The diabetes location, environmental attributes, and disparities network: protocol for nested case control and cohort studies, rationale, and baseline characteristics. JMIR Res Protoc. 2020;9(10):e21377. https://doi.org/10.2196/21377.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messer LC, Laraia BA, Kaufman JS, et al. The development of a standardized neighborhood deprivation index. J Urban Heal. 2006;83(6):1041–62. https://doi.org/10.1007/s11524-006-9094-x.

    Article  Google Scholar 

  11. Christine PJ, Auchincloss AH, Bertoni AG, et al. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus. JAMA Intern Med. 2015;175(8):1311. https://doi.org/10.1001/jamainternmed.2015.2691.

    Article  PubMed  PubMed Central  Google Scholar 

  12. ** in middle-to-old aged US men and women. Sleep. 2018;41(7):zsy076. https://doi.org/10.1093/sleep/zsy076.

  13. Lalloué B, Monnez J-M, Padilla C, et al. A statistical procedure to create a neighborhood socioeconomic index for health inequalities analysis. Int J Equity Health. 2013;12(1):21. https://doi.org/10.1186/1475-9276-12-21.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bilal U, Hill-Briggs F, Sánchez-Perruca L, Del Cura-González I, Franco M. Association of neighbourhood socioeconomic status and diabetes burden using electronic health records in Madrid (Spain): the HeartHealthyHoods study. BMJ Open. 2018;8(9):e021143. https://doi.org/10.1136/bmjopen-2017-021143.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Demšar U, Harris P, Brunsdon C, Fotheringham AS, McLoone S. Principal component analysis on spatial data: an overview. Ann Assoc Am Geogr. 2013;103(1):106–28. https://doi.org/10.1080/00045608.2012.689236.

    Article  Google Scholar 

  16. Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry/Geospatial Research, Analysis, and Services Program. CDC/ATSDR social vulnerability index database United Stateshttps://www.atsdr.cdc.gov/placeandhealth/svi/

  17. University of Wisconsin School of Medicine and Public Health. Area deprivation index v2. https://www.neighborhoodatlas.medicine.wisc.edu/.

  18. Mishra SV. Urban deprivation in a global south city-a neighborhood scale study of Kolkata. India Habitat Int. 2018;80:1–10. https://doi.org/10.1016/j.habitatint.2018.08.006.

    Article  Google Scholar 

  19. Myint SW. An exploration of spatial dispersion, pattern, and association of socio-economic functional units in an urban system. Appl Geogr. 2008;28(3):168–88. https://doi.org/10.1016/j.apgeog.2008.02.005.

    Article  Google Scholar 

  20. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.

    Article  Google Scholar 

  21. Pearson KLIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci. 1901;2(11):559–72. https://doi.org/10.1080/14786440109462720.

    Article  Google Scholar 

  22. Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24(6):417–41. https://doi.org/10.1037/h0071325.

    Article  Google Scholar 

  23. Harris P, Brunsdon C, Charlton M. Geographically weighted principal components analysis. Int J Geogr Inf Sci. 2011;25(10):1717–36. https://doi.org/10.1080/13658816.2011.554838.

    Article  Google Scholar 

  24. Stewart JE, Battersby SE, Lopez-De Fede A, Remington KC, Hardin JW, Mayfield-Smith K. Diabetes and the socioeconomic and built environment: geovisualization of disease prevalence and potential contextual associations using ring maps. Int J Health Geogr. 2011;10(1):18. https://doi.org/10.1186/1476-072X-10-18.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andrews MR, Tamura K, Claudel SE, et al. Geospatial analysis of neighborhood deprivation index (NDI) for the United States by county. J Maps. 2020;16(1):101–12. https://doi.org/10.1080/17445647.2020.1750066.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hong Y-R, Mainous AG. Development and validation of a county-level social determinants of health risk assessment tool for cardiovascular disease. Ann Fam Med. 2020;18(4):318–25. https://doi.org/10.1370/afm.2534.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dunteman GH. Quantitative applications in the social sciences: principal components analysis. Newbury Park: SAGE Publications, Inc.; 1989. https://doi.org/10.4135/9781412985475.

  28. Centers for Disease Control and Prevention. Diabetes Atlashttps://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html. Accessed 2 June 2020.

  29. Haynes-Maslow L, Leone LA. Examining the relationship between the food environment and adult diabetes prevalence by county economic and racial composition: an ecological study. BMC Public Health. 2017;17(1):648. https://doi.org/10.1186/s12889-017-4658-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deshpande AD, Baker EA, Lovegreen SL, Brownson RC. Environmental correlates of physical activity among individuals with diabetes in the rural Midwest. Diabetes Care. 2005;28(5):1012–8. https://doi.org/10.2337/diacare.28.5.1012.

    Article  PubMed  Google Scholar 

  31. Saydah SH, Imperatore G, Beckles GL. Socioeconomic status and mortality: contribution of health care access and psychological distress among U.S. adults with diagnosed diabetes. Diabetes care. 2013;36(1):49–55. https://doi.org/10.2337/dc11-1864.

    Article  PubMed  Google Scholar 

  32. O’Connor A, Wellenius G. Rural–urban disparities in the prevalence of diabetes and coronary heart disease. Public Health. 2012;126(10):813–20. https://doi.org/10.1016/j.puhe.2012.05.029.

    Article  PubMed  Google Scholar 

  33. Hirsch JA, Moore KA, Cahill J, et al. Business data categorization and refinement for application in longitudinal neighborhood health research: a methodology. J Urban Heal. 2021;98(2):271–84. https://doi.org/10.1007/s11524-020-00482-2.

    Article  Google Scholar 

  34. Waldorf, B., Kim, A. The Index of Relative Rurality (IRR) : US County Data for 2000 and 2010. Purdue University Research Repository. 2018. https://www.doi.org/10.4231/R7959FS8.

  35. Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods – a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23:1164–7.

    Article  CAS  Google Scholar 

  36. Lu B, Harris P, Charlton M, Brunsdon C. The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Inf Sci. 2014;17(2):85–101. https://doi.org/10.1080/10095020.2014.917453.

    Article  Google Scholar 

  37. Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M. Enhancements to a geographically weighted principal component analysis in the context of an application to an environmental data set. Geogr Anal. 2015;47(2):146–72. https://doi.org/10.1111/gean.12048.

    Article  Google Scholar 

  38. Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics accessible — the neighborhood atlas. N Engl J Med. 2018;378(26):2456–8. https://doi.org/10.1056/NEJMp1802313.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bilal U, Auchincloss AH, Diez-Roux AV. Neighborhood environments and diabetes risk and control. Curr Diab Rep. 2018;18(9):62. https://doi.org/10.1007/s11892-018-1032-2.

    Article  PubMed  Google Scholar 

  40. Kirby RS, Delmelle E, Eberth JM. Advances in spatial epidemiology and geographic information systems. Ann Epidemiol. 2017;27(1):1–9. https://doi.org/10.1016/j.annepidem.2016.12.001.

    Article  PubMed  Google Scholar 

  41. Saib M-S, Caudeville J, Beauchamp M, et al. Building spatial composite indicators to analyze environmental health inequalities on a regional scale. Environ Heal. 2015;14(1):68. https://doi.org/10.1186/s12940-015-0054-3.

    Article  Google Scholar 

  42. Fernández S, Cotos-Yáñez T, Roca-Pardiñas J, Ordóñez C. Geographically weighted principal components analysis to assess diffuse pollution sources of soil heavy metal: application to rough mountain areas in Northwest Spain. Geoderma. 2018;311:120–9. https://doi.org/10.1016/j.geoderma.2016.10.012.

    Article  CAS  Google Scholar 

  43. Logan JR, et al. Residential segregation by income, 1970–2009. Diversity and disparities: America enters a new century. New York: Russell Sage Foundation; 2014. pp. 208–31.

  44. Hamad R, Brown DM, Basu S. The association of county-level socioeconomic factors with individual tobacco and alcohol use: a longitudinal study of U.S. adults. BMC Public Health. 2019;19(1):390. https://doi.org/10.1186/s12889-019-6700-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Centers for Disease Control and Prevention (R01DK124400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanika A. De Silva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, S.S.A., Meeker, M.A., Ryan, V. et al. Comparing Global and Spatial Composite Measures of Neighborhood Socioeconomic Status Across US Counties. J Urban Health 99, 457–468 (2022). https://doi.org/10.1007/s11524-022-00632-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-022-00632-8

Keywords

Navigation