Log in

Frequency-specific network effective connectivity: ERP analysis of recognition memory process by directed connectivity estimators

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Human memory retrieval is one of the brain’s most important, and least understood cognitive mechanisms. Traditionally, research on this aspect of memory has focused on the contributions of particular brain regions to recognition responses, but the interaction between regions may be of even greater importance to a full understanding. In this study, we examined patterns of network connectivity during retrieval in a recognition memory task. We estimated connectivity between brain regions from electroencephalographic signals recorded from twenty healthy subjects. A multivariate autoregressive model (MVAR) was used to determine the Granger causality to estimate the effective connectivity in the time-frequency domain. We used GPDC and dDTF methods because they have almost resolved the previous volume conduction and bivariate problems faced by previous estimation methods. Results show enhanced global connectivity in the theta and gamma bands on target trials relative to lure trials. Connectivity within and between the brain’s hemispheres may be related to correct rejection. The left frontal signature appears to have a crucial role in recollection. Theta- and gamma-specific connectivity patterns between temporal, parietal, and frontal cortex may disclose the retrieval mechanism. Old/new comparison resulted in different patterns of network connection. These results and other evidence emphasize the role of frequency-specific causal network interactions in the memory retrieval process.

a Schematic of processing workflow which is consists of pre-processing, sliding-window AMVAR modeling, connectivity estimation, and validation and group network analysis. b Co-registration between Geodesic Sensor Net. and 10–20 system, the arrows mention eight regions of interest (Left, Anterior, Inferior (LAI) and Right, Anterior, Inferior (RAI) and Left, Anterior, Superior (LAS) and Right, Anterior, Superior (RAS) and Left, Posterior, Inferior (LPI) and Right, Posterior, Inferior (RPI) and Left, Posterior, Superior (LPS) and Right, Posterior, Superior (RPS))

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We used the terms “old” and “hits” interchangeably throughout the text

  2. We used the terms “new” and “CR” interchangeably throughout the text.

References

  1. Stevens MC (2009) The developmental cognitive neuroscience of functional connectivity. Brain Cogn 70(1):1–12. https://doi.org/10.1016/J.BANDC.2008.12.009, https://www.sciencedirect.com/science/article/pii/S0278262608003369

    Article  PubMed  Google Scholar 

  2. Yarkoni T, Poldrack RA, Van Essen DC, Wager TD (2010) Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn Sci 14(11):489–496. https://doi.org/10.1016/J.TICS.2010.08.004, https://www.sciencedirect.com/science/article/pii/S1364661310002019https://www.sciencedirect.com/science/article/pii/S1364661310002019

    Article  PubMed  PubMed Central  Google Scholar 

  3. Park H-J, Friston K (2013) Structural and functional brain networks: from connections to cognition. Sci (NY) 342(6158):1238411. https://doi.org/10.1126/science.1238411, http://www.ncbi.nlm.nih.gov/pubmed/24179229http://www.ncbi.nlm.nih.gov/pubmed/24179229

    Article  Google Scholar 

  4. Wixted JT (2007) Dual-process theory and signal-detection theory of recognition memory. Psychol Rev 114(1):152

    Article  PubMed  Google Scholar 

  5. Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13(3):280–291. https://doi.org/10.1177/1073858407299290

    Article  PubMed  Google Scholar 

  6. Duarte A, Ranganath C, Knight RT (2005) What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. J Neurosci 23 (6):2407–2415. https://doi.org/10.1523/jneurosci.1392-05.2005, https://www.jneurosci.org/content/25/36/8333.short

    Google Scholar 

  7. Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Ann Rev Neurosci 30(1):123–152. https://doi.org/10.1146/annurev.neuro.30.051606.094328

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell KJ, Johnson MK (2009) Source monitoring 15 years later: what have we learned from fMRI about the neural mechanisms of source memory?. Psychol Bull 135(4):638–677. https://doi.org/10.1037/a0015849

    Article  PubMed  PubMed Central  Google Scholar 

  9. Simons JS, Spiers HJ (2003) Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4(8):637–648. https://doi.org/10.1038/nrn1178, http://www.nature.com/articles/nrn1178

    Article  CAS  PubMed  Google Scholar 

  10. Hutchinson JB, Uncapher MR, Wagner AD (2009) Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learn Memory (Cold Spring Harbor, NY) 16(6):343–56. https://doi.org/10.1101/lm.919109, http://www.ncbi.nlm.nih.gov/pubmed/19470649http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2704099

    Article  Google Scholar 

  11. Spaniol J, Davidson PSR, Kim ASN, Han H, Moscovitch M, Grady CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47(8-9):1765–1779. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2009.02.028, https://www.sciencedirect.com/science/article/pii/S0028393209001067

    Article  PubMed  Google Scholar 

  12. Vilberg KL, Rugg MD (2008) Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46 (7):1787–1799. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.01.004, https://www.sciencedirect.com/science/article/pii/S0028393208000158https://www.sciencedirect.com/science/article/pii/S0028393208000158

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buzsáki G (1996) The hippocampo-neocortical dialogue. Cerebral cortex 6(2):81–92

    Article  PubMed  Google Scholar 

  14. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1(1):41–50. https://doi.org/10.1038/35036213, http://www.nature.com/articles/35036213

    Article  CAS  PubMed  Google Scholar 

  15. Norman KA, O’Reilly RC (2003) Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol Rev 110(4):611–646. https://doi.org/10.1037/0033-295X.110.4.611

    Article  PubMed  Google Scholar 

  16. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118. https://doi.org/10.1038/nrn2979, http://www.nature.com/articles/nrn2979

    Article  CAS  PubMed  Google Scholar 

  17. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2-3):169–195. https://doi.org/10.1016/S0165-0173(98)00056-3, https://www.sciencedirect.com/science/article/pii/S0165017398000563https://www.sciencedirect.com/science/article/pii/S0165017398000563

    Article  CAS  PubMed  Google Scholar 

  18. Hoerzer GM, Liebe S, Schloegl A, Logothetis NK, Rainer G (2010) Directed coupling in local field potentials of macaque V4 during visual short-term memory revealed by multivariate autoregressive models. Front Comput Neurosci 4:14. https://doi.org/10.3389/fncom.2010.00014

    PubMed  PubMed Central  Google Scholar 

  19. Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD (2013) Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci 16(3):349–356. https://doi.org/10.1038/nn.3315, http://www.nature.com/articles/nn.3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee C-Y, Zhang B-T (2014) Effective eeg connectivity analysis of episodic memory retrieval. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol 36

  21. Talebi N, Nasrabadi AM, Mohammad-Rezazadeh I (2018) Estimation of effective connectivity using multi-layer perceptron artificial neural network. Cogn Neurodyn 12(1):21–42. https://doi.org/10.1007/s11571-017-9453-1

    Article  PubMed  Google Scholar 

  22. Darvishi MJ, Nasrabadi AM, Curran T (2016) Effective connectivity measuring of ERP signals in recognition memory process by generalized partial directed coherence. In: 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp 64–68. http://ieeexplore.ieee.org/document/7890930/

  23. Granger C WJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424. https://doi.org/10.2307/1912791, https://www.jstor.org/stable/1912791?origin=crossrefhttps://www.jstor.org/stable/1912791?origin=crossref

    Article  Google Scholar 

  24. Granger CliveWJ (1980) Testing for causality: a personal viewpoint. J Econ Dyn Control 2:329–352

    Article  Google Scholar 

  25. Blinowska KJ, Kamiński M (2006) 15 multivariate signal analysis by parametric models. Handb Time Ser Anal Recent Theor Dev Appl:373

  26. Fanselow EE, Sameshima K, Baccala LA, Nicolelis MA (2001) Thalamic bursting in rats during different awake behavioral states. Proc Natl Acad Sci USA 98 (26):15330–5. https://doi.org/10.1073/pnas.261273898, http://www.ncbi.nlm.nih.gov/pubmed/11752471http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC65029

    Article  CAS  PubMed  Google Scholar 

  27. Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210. https://doi.org/10.1007/BF00198091

    Article  CAS  PubMed  Google Scholar 

  28. Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28(2):143–157. https://doi.org/10.1002/hbm.20263

    Article  PubMed  Google Scholar 

  29. Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474. https://doi.org/10.1007/PL00007990

    Article  PubMed  Google Scholar 

  30. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2-3):241–248. https://doi.org/10.1016/S0167-8760(00)00145-8, https://www.sciencedirect.com/science/article/pii/S0167876000001458https://www.sciencedirect.com/science/article/pii/S0167876000001458

    Article  PubMed  Google Scholar 

  31. Kaminski M, Blinowska KJ (2017) The influence of volume conduction on DTF estimate and the problem of its mitigation. Front Comput Neurosci 11:36. https://doi.org/10.3389/fncom.2017.00036

    Article  PubMed  PubMed Central  Google Scholar 

  32. Curran T, DeBuse C, Woroch B, Hirshman E (2006) Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci Offic J Soc Neurosci 26 (7):1979–85. https://doi.org/10.1523/JNEUROSCI.5370-05.2006, http://www.ncbi.nlm.nih.gov/pubmed/16481430

    Article  CAS  Google Scholar 

  33. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/J.JNEUMETH.2003.10.009, https://www.sciencedirect.com/science/article/pii/S0165027003003479

    Article  PubMed  Google Scholar 

  34. Barnett L, Seth AK (2011) Behaviour of Granger causality under filtering: theoretical invariance and practical application. J Neurosci Methods 201(2):404–419. https://doi.org/10.1016/J.JNEUMETH.2011.08.010, https://www.sciencedirect.com/science/article/pii/S0165027011004687https://www.sciencedirect.com/science/article/pii/S0165027011004687

    Article  PubMed  Google Scholar 

  35. Bigdely-Shamlo N, Mullen T, Kothe C, Su K-M, Robbins KA (2015) The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics 9:16. https://doi.org/10.3389/fninf.2015.00016, http://journal.frontiersin.org/Article/10.3389/fninf.2015.00016/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  36. Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2010) The effect of filtering on Granger causality based multivariate causality measures. NeuroImage 50(2):577–588. https://doi.org/10.1016/J.NEUROIMAGE.2009.12.050, https://www.sciencedirect.com/science/article/pii/S1053811909013391https://www.sciencedirect.com/science/article/pii/S1053811909013391

    Article  PubMed  Google Scholar 

  37. Mitra P (2007) Observed brain dynamics. Oxford University Press

  38. Rousselet GA (2012) Does filtering preclude us from studying erp time-courses?. Front Psychol 3:131

    Article  PubMed  PubMed Central  Google Scholar 

  39. VanRullen R (2011) Four common conceptual fallacies in map** the time course of recognition. Front Psychol 2:365. https://doi.org/10.3389/fpsyg.2011.00365

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tanner D, Morgan-Short K, Luck SJ (2015) How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology 52(8):997–1009. https://doi.org/10.1111/psyp.12437

    Article  PubMed  PubMed Central  Google Scholar 

  41. Widmann A, Schröger E, Maess B (2015) Digital filter design for electrophysiological data a practical approach. J Neurosci Methods 250:34–46. https://doi.org/10.1016/J.JNEUMETH.2014.08.002, https://www.sciencedirect.com/science/article/pii/S0165027014002866https://www.sciencedirect.com/science/article/pii/S0165027014002866

    Article  PubMed  Google Scholar 

  42. Mullen TR, Kothe C AE, Chi YM, Ojeda A, Kerth T, Makeig S, Jung T-P, Cauwenberghs G (2015) Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans Biomed Eng 62(11):2553–2567. https://doi.org/10.1109/TBME.2015.2481482, http://ieeexplore.ieee.org/document/7274673/

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wheeler ME, Buckner RL (2004) Functional-anatomic correlates of remembering and knowing. NeuroImage 21(4):1337–1349. https://doi.org/10.1016/J.NEUROIMAGE.2003.11.001, https://www.sciencedirect.com/science/article/pii/S1053811903007213

    Article  PubMed  Google Scholar 

  44. Yonelinas AP, Otten LJ, Shaw KN, Rugg MD (2005) Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci 25(11):3002–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaminski M, Brzezicka A, Kaminski J, Blinowska KJ (2019) Coupling between brain structures during visual and auditory working memory tasks. Int J Neural Syst 29(03):1850046

    Article  PubMed  Google Scholar 

  46. Mullen TR (2014) The dynamic brain: modeling neural dynamics and interactions from human electrophysiological recordings. University of California, San Diego

  47. Kaminski M, Brzezicka A, Kaminski J, Blinowska KJ (2016) Measures of coupling between neural populations based on granger causality principle. Front Comput Neurosci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blinowska KJ (2011) Review of the methods of determination of directed connectivity from multichannel data. Med Biol Eng Comput 49(5):521–529

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baccala LA, Sameshima K, Takahashi DY (2007) Generalized partial directed coherence. In: 2007 15th International Conference on Digital Signal Processing. IEEE, pp 163–166. http://ieeexplore.ieee.org/document/4288544/

  50. Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (ddtf) method. J Neurosci Methods 125(1-2):195–207

    Article  PubMed  Google Scholar 

  51. Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenom 58(1-4):77–94. https://doi.org/10.1016/0167-2789(92)90102-S, https://www.sciencedirect.com/science/article/pii/016727899290102S

    Article  Google Scholar 

  52. Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:1–12. https://doi.org/10.1155/2011/130714, http://www.hindawi.com/journals/cin/2011/130714/

    Article  Google Scholar 

  53. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Google Scholar 

  54. McDonald JH (2009) Handbook of biological statistics, vol 2. Sparky house publishing, Baltimore

  55. Best CarolynJM, Gillespie JW, Yi Y, Chandramouli GadisettiVR, Perlmutter MA, Gathright Y, Erickson HS, Georgevich L, Tangrea MA, Duray PH et al (2005) Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 11(19):6823–6834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nyhus E, Curran T (2010) Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev 34(7):1023–1035

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Ann Rev Psychol 67:105–134

    Article  Google Scholar 

  58. Burgess AP, Ali L (2002) Functional connectivity of gamma eeg activity is modulated at low frequency during conscious recollection. Int J Psychophysiol 46(2):91–100

    Article  PubMed  Google Scholar 

  59. Babiloni C, Babiloni F, Carducci F, Cincotti F, Vecchio F, Cola B, Rossi S, Miniussi C, Rossini PM (2004) Functional frontoparietal connectivity during short-term memory as revealed by high-resolution eeg coherence analysis. Behav Neurosci 118(4):687

    Article  PubMed  Google Scholar 

  60. Blinowska KJ, Kamiński M, Brzezicka A, Kamiński J (2013) Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task. Philos Trans R Soc A: Math Phys Eng Sci 371(1997):20110614

    Article  Google Scholar 

  61. Talebi N, Nasrabadi AM, Mohammad-Rezazadeh I (2019) Bypassing the volume conduction effect by multilayer neural network for effective connectivity estimation. Med Biol Eng Comput 57(9):1947–1959

    Article  PubMed  Google Scholar 

  62. Farris EA, Odegard TN, Miller HL, Ring J, Allen G, Black J (2011) Functional connectivity between the left and right inferior frontal lobes in a small sample of children with and without reading difficulties. Neurocase 17(5):425–439

    Article  PubMed  Google Scholar 

  63. Franzmeier N, Hartmann JC, Taylor AlexanderNW, AraqueCaballero MA, Simon-Vermot L, Buerger K, Kambeitz-Ilankovic LM, Ertl-Wagner B, Mueller C, Catak C et al (2017) Left frontal hub connectivity during memory performance supports reserve in aging and mild cognitive impairment. J Alzheimers Dis 59(4):1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617

    Article  PubMed  PubMed Central  Google Scholar 

  65. Han Y, Wang K, Jia J, Wu W (2017) Changes of EEG spectra and functional connectivity during an object-location memory task in Alzheimer’s disease. Front Behav Neurosci 11:107. https://doi.org/10.3389/fnbeh.2017.00107

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hanouneh S, Amin HU, Saad NM, Malik AS (2018) Eeg power and functional connectivity correlates with semantic long-term memory retrieval. Ieee Access 6:8695–8703

    Article  Google Scholar 

  67. Vlachos I, Krishnan B, Treiman DM, Tsakalis K, Kugiumtzis D, Iasemidis LD (2016) The concept of effective inflow: application to interictal localization of the epileptogenic focus from ieeg. IEEE Trans Biomed Eng 64(9):2241–2252

    Article  PubMed  Google Scholar 

  68. Meyer L, Grigutsch M, Schmuck N, Gaston P, Friederici AD (2015) Frontal–posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex 71:205–218

    Article  PubMed  Google Scholar 

  69. Wheeler ME, Buckner RL, Shaw KN, Rugg MD (2003) Functional dissociation among components of remembering: control, perceived oldness, and content. J Neurosci Official J Soc Neurosci 23(9):3869–80. https://doi.org/10.1523/jneurosci.5295-04.2005, http://www.ncbi.nlm.nih.gov/pubmed/12736357

    Article  CAS  Google Scholar 

  70. Ward J (2015) The student’s guide to cognitive neuroscience. Psychology Press

  71. Pazzaglia AM, Dube C, Rotello CM (2013) A critical comparison of discrete-state and continuous models of recognition memory: implications for recognition and beyond. Psychol Bull 139(6):1173

    Article  PubMed  Google Scholar 

  72. Vande Steen F, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D (2019) Critical comments on eeg sensor space dynamical connectivity analysis. Brain Topogr 32(4):643–654

    Article  Google Scholar 

  73. Brunner C, Billinger M, Seeber M, Mullen TR, Makeig S (2016) Volume conduction influences scalp-based connectivity estimates. Front Comput Neurosci 10:121. https://doi.org/10.3389/fncom.2016.00121

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaminski M, Blinowska KJ (2014) Directed transfer function is not influenced by volume conductioninexpedient pre-processing should be avoided. Front Comput Neurosci 8:61

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Motie Nasrabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author contributions

M.J.D. and A.M.N. conceived of the presented idea. M.J.D. developed the theory, verified, and performed the analytical methods. M.J.D wrote the manuscript in consultation with C.D. C.D. contributed to the interpretation of the results. A.M.N. supervised the project. All authors discussed the results and contributed to the final manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was done while the first author was a graduate student in the Department of Biomedical Engineering, Shahed University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishi Bayazi, M.J., Motie Nasrabadi, A. & Dubé, C. Frequency-specific network effective connectivity: ERP analysis of recognition memory process by directed connectivity estimators. Med Biol Eng Comput 59, 575–588 (2021). https://doi.org/10.1007/s11517-020-02304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02304-8

Keywords

Navigation