Log in

Stiefel-Whitney classes of curve covers

  • Published:
Arkiv för Matematik

Abstract

Let \(D\) be a Dedekind scheme with the characteristic of all residue fields not equal to 2. To every tame cover \(C\to D\) with only odd ramification we associate a second Stiefel-Whitney class in the second cohomology with mod 2 coefficients of a certain tame orbicurve \([D]\) associated to \(D\). This class is then related to the pull-back of the second Stiefel-Whitney class of the push-forward of the line bundle of half of the ramification divisor. This shows (indirectly) that our Stiefel-Whitney class is the pull-back of a sum of cohomology classes considered by Esnault, Kahn and Viehweg in ‘Coverings with odd ramification and Stiefel-Whitney classes’. Perhaps more importantly, in the case of a proper and smooth curve over an algebraically closed field, our Stiefel-Whitney class is shown to be the pull-back of an invariant considered by Serre in ‘Revêtements à ramification impaire et thêta-caractéristiques’, and in this case our arguments give a new proof of the main result of that article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esnault, H., Kahn, B. and Viehweg, E., Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145–188.

    MathSciNet  MATH  Google Scholar 

  2. Fulton, W. and Harris, J., Representation Theory. A First Course, Springer, New York, 1991.

    MATH  Google Scholar 

  3. Giraud, J., Cohomologie non abélienne, Springer, Berlin, 1971.

    MATH  Google Scholar 

  4. Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford University Press, New York, 2002.

    MATH  Google Scholar 

  5. Mazur, B., Notes on étale cohomology of number fields, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 521–556.

    MathSciNet  MATH  Google Scholar 

  6. Milne, J. S., Etale Cohomology, Princeton University Press, Princeton, 1980.

    MATH  Google Scholar 

  7. Mumford, D., Theta characteristics of an algebraic curve, Ann. Sci. Éc. Norm. Supér. (4) 4 (1971), 181–192.

    MathSciNet  MATH  Google Scholar 

  8. Poma, F., Étale cohomology of a DM curve-stack with coefficients in \(\mathbb{G}_{m}\), Monatsh. Math. 169 (2013), 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  9. Serre, J.-P., L’invariant de Witt de la forme Tr(\(x^{2}\)), Comment. Math. Helv. 59 (1984), 651–676.

    Article  MathSciNet  MATH  Google Scholar 

  10. Serre, J.-P., Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris 311 (1990), 547–552.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Selander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selander, B. Stiefel-Whitney classes of curve covers. Ark Mat 54, 537–554 (2016). https://doi.org/10.1007/s11512-016-0234-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-016-0234-6

Keywords

Navigation