Log in

Particle degradation and nutrient bioavailability of soybean milk during in vitro digestion

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work studies the structural breakdown and nutrient release during in vitro digestion of soybean milk reconstituted from soybean flour with different particle sizes (> 100 mesh, 50–100 mesh, 28–50 mesh, 14–28 mesh and < 14 mesh). A clear effect of the particle size is noticed on the functional characteristics of the colloidal food during the gastric and intestinal digestion stages. In vitro gastric digestion significantly improves the release of polyphenols (21.4 ± 1.1–35.6 ± 3.2%, compared with the undigested one). In that stage, the antioxidant capacity increases between 20.8–38.5%, and is related to the particle size, hence free surface area, of soybean flour. Confocal microscopy shows that the proteins released from the soybean flour particles aggregate during gastric digestion, while the lipid droplets decompose down into smaller colloidal entities. Examination of the effect of particle size on the release of phenolic compounds, small molecule proteins/peptides, and fatty acids, showed that the highest amounts of the above substances existed when the particle size of soybean flour lies in the region of 50–100 mesh. This particle size also shows the highest bioaccessibility of the contained bioactive substances (polyphenols, 124.5 ± 0.5%; flavonoids, 49.1 ± 1.5%). These findings add insight on the role of the colloidal properties of the soybean flour with different particle sizes on the functionality of soybean milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.Y. Zhao, X.W. Zhang, H.K. Liu, G.X. Zhang, Q. Ao, Food Hydrocolloid 74, 358–366 (2018)

    Article  CAS  Google Scholar 

  2. D. Yimit, P. Hoxur, N. Amat, K. Uchikawa, N. Yamaguchi, Nutrition. 28, 154–159 (2012)

    Article  CAS  Google Scholar 

  3. F. Giusti, G. Caprioli, M. Ricciutelli, S. Vittori, G. Sagratini, Food Chem 221, 689–697 (2017)

    Article  CAS  Google Scholar 

  4. W.L. Liu, A.Q. Ye, F.F. Han, J.Z. Han, Adv Colloid Interfac 263, 52–67 (2019)

    Article  CAS  Google Scholar 

  5. M.J. Rodríguez-Roque, M.A. Rojas-Graü, P. Elez-Martínez, O. Martín-Belloso, J Funct Foods. 7, 161–169 (2014)

    Article  Google Scholar 

  6. X. Dong, W.Q. Xu, R.A. Sikes, C.Q. Wu, Food Chem 135, 1643–1652 (2012)

    Article  CAS  Google Scholar 

  7. W.L. Liu, H.H. Lou, C. Ritzoulis, X.Z. Chen, P. Shen, Y.J. Lu, K.R. Wu, L. Dong, H.Y. Zhu, J.Z. Han, LWT-Food Sci Technol 108, 326–331 (2019)

    Article  CAS  Google Scholar 

  8. A.L. Capriotti, G. Caruso, C. Cavaliere, R. Samperi, S. Ventura, R.Z. Chiozzi, A. Laganà, J. Food Compos. Anal. 44, 205–213 (2015)

    Article  CAS  Google Scholar 

  9. K. Argyri, A. Birba, D.D. Miller, M. Komaitis, M. Kapsokefalou, Food Chem. 113, 602–607 (2009)

    Article  CAS  Google Scholar 

  10. P. Wang, H.J. Liu, X.Y. Mei, M. Nakajima, L.J. Yin, Food Hydrocolloid 26, 427–433 (2012)

    Article  CAS  Google Scholar 

  11. A.M. Farooq, C. Li, S.Q. Chen, X. Fu, B. Zhang, Q. Huang, Int J Biol Macromol. 118, 160–167 (2018)

    Article  CAS  Google Scholar 

  12. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, Food Funct. 5, 1113–1124 (2014)

    Article  CAS  Google Scholar 

  13. M.M. Tian, J.Z. Han, A.Q. Ye, W.L. Liu, X.K. Xu, Y.X. Yao, K.X. Li, Y.Y. Kong, F.Q. Wei, W. Zhou, J Sci Food Agr 99, 2677–2684 (2019)

    Article  CAS  Google Scholar 

  14. C.Y. Feng, S.S. Li, D.D. Yin, H.J. Zhang, D.K. Tian, Q. Wu, L.J. Wang, S. Su, L.S. Wang, Ind Crop Prod 87, 96–104 (2016)

    Article  CAS  Google Scholar 

  15. R. Pulicharla, C. Marques, R.K. Das, T. Rouissi, S.K. Brar, Int J Biol Macromol. 88, 171–178 (2016)

    Article  CAS  Google Scholar 

  16. Z. Maksimović, Ɖ Malenčić, N. Kovačević, Bioresource Technol 96, 873–877 (2005)

    Article  Google Scholar 

  17. T. Belwal, P. Dhyani, I.D. Bhatt, R.S. Rawal, V. Pande, Food Chem. 207, 115–124 (2016)

    Article  CAS  Google Scholar 

  18. N. Gangopadhyay, D.K. Rai, N.P. Brunton, E. Gallagher, M.B. Hossain, Food Chem. 210, 212–220 (2016)

    Article  CAS  Google Scholar 

  19. D. Sotomayor-Gerding, B.D. Oomah, F. Acevedo, E. Morales, M. Bustamante, C. Shene, M. Rubilar, Food Chem. 199, 463–470 (2016)

    Article  CAS  Google Scholar 

  20. Y.Y. Cao, E.M. **ong, A.D. True, Y.L. **ong, LWT-Food Sci Technol 69, 224–250 (2016)

    Article  Google Scholar 

  21. W.L. Liu, Y.Y. Kong, A.Q. Ye, P. Shen, L. Dong, X.K. Xu, Y.Y. Hou, Y.P. Wang, Y.Y. **, J.Z. Han, Food Hydrocolloid. 104, 105743 (2020)

    Article  CAS  Google Scholar 

  22. W.L. Liu, J.H. Liu, L.J. Salt, M.J. Ridout, J.Z. Han, P.J. Wilde, Food Funct 10, 7262 (2019)

    Article  CAS  Google Scholar 

  23. A.J. Clulow, M. Salim, A. Hawley, B.J. Boyd, Chem Phys Lipids 211, 107–116 (2017)

    Article  Google Scholar 

  24. M.J. Rodríguez-Roque, M.A. Rojas-Graü, P. Elez-Martínez, O. Martín-Belloso, Food Chem. 136, 206–212 (2013)

  25. F.B. Apea-Bah, M. Amanda, M.J. Bester, K.G. Duodu, Food Chem 197, 307–315 (2016)

    Article  CAS  Google Scholar 

  26. H.G. Akillioglu, S. Karakaya, Food Science Biotechnol 19, 633–639 (2010)

    Article  CAS  Google Scholar 

  27. M.L. Heras, E.F. Landines, A. Heredia, M.L. Castelló, A. Andrés, J Food Sci Technol 54, 2902–2912 (2017)

    Article  Google Scholar 

  28. M.M. Grundy, T. Grassby, G. Mandalari, K.W. Waldron, P.J. Butterworth, S.E. Berry, P.R. Ellis, Am. J. Clin. Nutr. 101, 25–33 (2015)

    Article  CAS  Google Scholar 

  29. M. Noguer, A.B. Cerezo, M. Rentzsch, P. Winterhalter, A.M. Troncoso, M.C. García-Parrilla, J Agr Food Chem. 56, 8879–8884 (2008)

    Article  CAS  Google Scholar 

  30. M. Peña-Cerda, J. Arancibia-Radich, P. Valenzuela-Bustamante, R. Pérez-Arancibia, A. Barriga, I. Seguel, L. García, C. Delporte, Food Chem 215, 219–227 (2017)

    Article  Google Scholar 

  31. P. Etcheverry, M.A. Grusak, L.E. Fleige, Front Physiol 3, 1–22 (2012)

    Article  Google Scholar 

  32. R. Lucas-González, M. Viuda-Martos, J.A.P. Álvarez, J. Fernández-López, Food Chem. 256, 252–258 (2018)

    Article  Google Scholar 

  33. S.D.Siqueira Jørgensen, M.A. Sawaf, K. Graeser, K.H. Mu, A. Müllertz, T. Rades, Eur. J. Pharm. Biopharm. 124, 116–124 (2018)

    Article  Google Scholar 

  34. C. Martinez-Villaluenga, N.A. Bringe, M.A. Berhow, E.G.D. Mejia, J Agr Food Chem. 56, 10533–10543 (2008)

    Article  CAS  Google Scholar 

  35. M.G. Vernaza, V.P. Dia, E.G.D. Mejia, Y.K. Chang, Food Chem. 134, 2217 (2012)

    Article  CAS  Google Scholar 

  36. A. Sarkar, K.K.T. Goh, H. Singh, Food Hydrocolloid 23, 1270–1278 (2009)

    Article  CAS  Google Scholar 

  37. R.J. Zhang, Z.P. Zhang, H. Zhang, E.A. Decker, D.J. Mcclements, Food Res. Int. 75, 71–78 (2015)

    Article  CAS  Google Scholar 

  38. X.Q. Zhu, A.Q. Ye, T. Verrier, H. Singh, Food Chem. 139, 398–404 (2013)

    Article  CAS  Google Scholar 

  39. S.J. Hur, S.J. Lee, S.Y. Lee, Y.Y. Bahk, C.G. Kim, LWT-Food Sci Technol 60, 630–636 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Zhejiang Province (LY18C200005), project of Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition (2017SICR103), the Talent Project of Zhejiang Association for Science and Technology (2018YCGC235) and the Open Fund of Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences (KFKT201805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ritzoulis, C., Han, J. et al. Particle degradation and nutrient bioavailability of soybean milk during in vitro digestion. Food Biophysics 16, 58–69 (2021). https://doi.org/10.1007/s11483-020-09649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09649-5

Keywords

Navigation