Log in

Graphene and Gold Metasurface-Based Terahertz Surface Plasmon Resonance Sensor for Explosive Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The development of efficient sensors for rapid and accurate detection of explosives is a critical requirement for various security and safety applications. In this study, we present a novel approach that utilizes a terahertz sensor enhanced by graphene and a gold metasurface deposited on a glass substrate for the identification of nitroglycerine, TNT, and RDX. The integration of these nanomaterials into the sensor design significantly enhances its sensitivity and specificity to trace amounts of explosives. This innovative sensor offers a multifaceted approach to achieve both high sensitivity and specificity by leveraging the unique characteristics of gold, graphene, and glass within a metasurface architecture. The implications of these are substantial, indicating the sensor’s significant promise in forensic drug detection. The results highlight the exceptional performance traits of the proposed graphene metasurface sensor. With a maximum sensitivity of 927 GHz/RIU and a detection limit of 0.189 RIU − 1, the sensor showcases its impressive capabilities. Additionally, the sensor resolutions and FOM, calculated at 0.025 and 4.905 RIU-1, respectively, underscore its ability to precisely measure even the most delicate alterations in the refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Dalal S (2023) “Biosensors as recognition tool for bioelements,” in Multifaceted Bio-sensing Technology pp. 151–168

  2. Ligler FS (2009) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81(2):519–526. https://doi.org/10.1021/ac8016289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel SK, Parmar J (2021) “Highly sensitive and tunable refractive index biosensor based on phase change material,” Phys B CondensMatter vol. 622.  https://doi.org/10.1016/j.physb.2021.413357

  4. Patel SK, Alsalman O, Taya SA, Parmar J (2023) Skin cancer detection using tunable graphene SPR optical sensor designed using circular ring resonator. Plasmonics. https://doi.org/10.1007/s11468-023-01957-z

    Article  Google Scholar 

  5. Akkilic N, Geschwindner S, Höök F (2020) “Single-molecule biosensors: recent advances and applications.” Biosens Bioelectron vol. 151. https://doi.org/10.1016/j.bios.2019.111944

  6. Shobhit K (2020) Patel; Juveriya Parmar; Rozalina Zakaria; A Sharafali; Truong Khang Nguyen; Vigneswaran Dhaasarathan, “Sensitivity analysis of metasurface array-based refractive index biosensors.” IEEE Sens J. https://doi.org/10.1109/JSEN.2020.3017938

    Article  Google Scholar 

  7. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland) 21(4):1–35. https://doi.org/10.3390/s21041109

    Article  CAS  Google Scholar 

  8. Patel SK, Parmar J, Zakaria RB, Sharafali A, Nguyen TK, Dhasarathan V (2021) “Sensitivity analysis of metasurface array-based refractive index biosensors.” IEEE Sens J. https://doi.org/10.1109/JSEN.2020.3017938

  9. Pandey CM, Malhotra BD (2019) Biosensors: fundamentals and applications

  10. Abed MS, Jawad ZA (2022) “Nanotechnology for defence applications,” in Mater Horizons: From Nature to Nanomaterials pp. 187–205

  11. Patel SK et al (2022) “Graphene based highly sensitive refractive index sensor using double split ring resonator metasurface.” Opt Quantum Electron vol. 54(no. 3). https://doi.org/10.1007/s11082-022-03600-3

  12. Patel SK et al (2020) “Design of graphene metasurface based sensitive infrared biosensor”, Sensors Actuators. A Phys. https://doi.org/10.1016/j.sna.2019.111767

    Article  Google Scholar 

  13. Ilyas Q et al (2022)“Fluorescein based fluorescent and colorimetric sensors for sensitive detection of TNP explosive in aqueous medium: application of logic gate.” Spectrochim Acta - Part A Mol Biomol Spectrosc vol. 272. https://doi.org/10.1016/j.saa.2022.120994

  14. Peters KL, Corbin I, Kaufman LM, Zreibe K, Blanes L, McCord BR (2015) Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal Methods 7(1):63–70. https://doi.org/10.1039/c4ay01677g

    Article  CAS  Google Scholar 

  15. Al-Mousawi AJ (2020) “Magnetic explosives detection system (MEDS) based on wireless sensor network and machine learning.” Meas J Int Meas Confed vol. 151. https://doi.org/10.1016/j.measurement.2019.107112

  16. Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG (2021) Roadmap of terahertz imaging 2021. Sensors 21(12):1–51. https://doi.org/10.3390/s21124092

    Article  Google Scholar 

  17. Zhen Z, Zhu H (2017) “Structure and properties of graphene.” in Graphene: Fabrication Characterizations Properties and Applications pp. 1–12

  18. Parmar J, Patel SK, Ahmed K, Dhasarathan V (2021) Numerical investigation of tunable multistacked metamaterial-based graphene grating. Microw Opt Technol Lett 63(4):1106–1111. https://doi.org/10.1002/mop.32719

    Article  Google Scholar 

  19. Quevedo-Teruel O et al (2019) “Roadmap on metasurfaces.” J Opt (United Kingdom) vol. 21(no. 7). https://doi.org/10.1088/2040-8986/ab161d

  20. Seo M, Park HR (2020) Terahertz biochemical molecule-specific sensors. Adv Opt Mater 8(3):1–14. https://doi.org/10.1002/adom.201900662

    Article  CAS  Google Scholar 

  21. Cherkasova O, Konnikova M, Kistenev Y, Vaks V, Coutaz JL, Shkurinov A (2022) Terahertz spectroscopy of biological molecules in solid, liquid, and gaseous states. Molecular and Laser Spectroscopy: Advances and ApplicationsVolume 3(3):433–478

    Article  Google Scholar 

  22. Islam MS et al (2020) Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing. Carbon N Y. https://doi.org/10.1016/j.carbon.2019.11.026

    Article  Google Scholar 

  23. Parmar J, Patel SK, Katkar V, Natesan A (2022) “Graphene-based refractive index sensor using machine learning for detection of mycobacterium tuberculosis bacteria.” IEEE Trans. Nanobioscience pp. 1–1. https://doi.org/10.1109/TNB.2022.3155264

  24. Ramesh M, Janani R, Deepa C, Rajeshkumar L (2023) “Nanotechnology-enabled biosensors: a review of fundamentals, design principles, materials, and applications.” Biosensors vol. 13 (no. 1). https://doi.org/10.3390/bios13010040

  25. Parmar J, Patel SK (2021) Encrypted and tunable graphene-based metasurface refractive index sensor. Microw Opt Technol Lett. https://doi.org/10.1002/mop.33049

    Article  Google Scholar 

  26. Asha AB  Narain R (2020) “Nanomaterials properties.” in Polymer Science and Nanotechnology: Fundamentals and Applications pp. 343–359

  27. Cho IH, Kim DH, Park S (2020) “Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis.” Biomater Res vol. 24(no. 1). https://doi.org/10.1186/s40824-019-0181-y

  28. Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A (2021) “Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials.” Adv Funct Mater vol. 31(no.44). https://doi.org/10.1002/adfm.202104126

  29. Parmar J, Patel SK, Ladumor M, Sorathiya V, Katrodiya D (2019) Graphene-silicon hybrid chirped-superstructure Bragg gratings for far infrared frequency. Mater Res Express. https://doi.org/10.1088/2053-1591/ab0b5d

    Article  Google Scholar 

  30. Patel SK, Wekalao J, Alsalman O, Surve J, Parmar J, Taya SA (2023) “Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection.” Opt Quantum Electron vol. 55(no.11). https://doi.org/10.1007/s11082-023-05265-y

  31. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):1–16. https://doi.org/10.3390/bios13080759

    Article  CAS  Google Scholar 

  32. Wekalao J, Patel SK, Alsalman O, Surve J, Anushkannan NK, Parmar J (2023) “Waterborne bacteria detecting highly sensitive graphene metasurface based cost-efficient and efficient refractive index sensors.” Plasmonics no. 0123456789. https://doi.org/10.1007/s11468-023-01983-x

  33. Wekalao J, Patel SK, Anushkannan NK, Alsalman O, Surve J, Parmar J (2023) “Design of ring and cross shaped graphene metasurface sensor for efficient detection of malaria and 2 bit encoding applications.” Diam Relat Mater vol. 139 no. August, p. 110401. https://doi.org/10.1016/j.diamond.2023.110401

  34. Wekalao J et al (2023) Graphene-based THz surface plasmon resonance biosensor for hemoglobin detection applicable in forensic science. Plasmonics. https://doi.org/10.1007/s11468-023-02146-8

    Article  Google Scholar 

  35. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395(2):283–300. https://doi.org/10.1007/s00216-009-2802-0

    Article  CAS  PubMed  Google Scholar 

  36. Naveen Kumar P, Ganesh D, Nagaraju M, Reshma B, Chaudhary AK (2021) Detection of explosives and non-explosive materials from a soil matrix using 0.5 and 1.5 THz radiation. Springer Proceedings in Physics 258:889–893. https://doi.org/10.1007/978-981-15-9259-1_204

    Article  CAS  Google Scholar 

  37. Shree MD, Sangeetha A, Krishnan P (2020) Design and analysis of FBG sensor for explosive detection applications. Plasmonics 15(3):813–819. https://doi.org/10.1007/s11468-019-01100-x

    Article  CAS  Google Scholar 

  38. Zimmerman WBJ (2006) “Introduction to COMSOL multiphysics.” Multiphysics Modelling with Finite Element Methods pp. 1–26. https://doi.org/10.1142/9789812773302_0001

  39. Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sens J. https://doi.org/10.1109/JSEN.2019.2918214

    Article  Google Scholar 

  40. Kumar A, Verma P, **dal P (2023) “Machine learning approach to surface plasmon resonance sensor based on MXene coated PCF for malaria disease detection in RBCs.” Optik (Stuttg) vol. 274. https://doi.org/10.1016/j.ijleo.2023.170549

  41. Surve J, Jadeja R, Parmar T, Parmar J (2022) “A terahertz-based graphene metasurface sensor for hemoglobin detection with high Q factor and low figure of merit.” in Terahertz Devices, Circuits and Systems: Materials, Methods and Applications pp. 41–51

  42. Cheng R, Xu L, Yu X, Zou L, Shen Y, Deng X (2020) High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt Commun. https://doi.org/10.1016/j.optcom.2020.125850

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding Program grant code (NU/RG/SERC/12/4).

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding Program grant code (NU/RG/SERC/12/4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.W. and H.B.A.; methodology, J.W., H.B.A., and A.K.U.; software, J.W., A.K.U., and H.B.A.; investigation, M.J., A.H.M.A., and A.A.; formal analysis, all authors; writing—original draft preparation, all authors; writing—review and editing, all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hasan B. Albargi or Abdulkarem H. M. Almawgani.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekalao, J., U., A.K., Albargi, H.B. et al. Graphene and Gold Metasurface-Based Terahertz Surface Plasmon Resonance Sensor for Explosive Detection. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02229-0

Keywords

Navigation