Log in

Fano Resonance-Plasmonic Biosensors Based on Strong Coupling of Hybrid Plasmonic-Photonic Modes

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface Plasmon Resonance (SPR) sensors are a useful tool for biomolecule detection, offering label-free and real-time monitoring characteristics. However, traditional SPR sensors still face the challenges of limited detection sensitivity, especially for sensing small molecules with a low concentration level (less than 1 pM (10−12 mol/L)). To overcome this challenge, in this paper, we designed a Kretschmann configuration which uses a plasmonic waveguide to generate a powerful Fano resonance through the coupling of the surface plasmon polariton (SPP) mode and photonic waveguide (PWG) mode at the sensing interface. By optimizing the thickness of the layers of the metamaterial structure, it is also possible to adjust the resonance angle, the reflectivity, the quality factor (Q factor), the intensity sensitivity, the angular sensitivity and the detection range. In our designed subwavelength grating waveguides (SWG) structure sensor, the intensity sensitivity reached 1.808 × 104 RIU−1, which surpassed the intensity sensitivity of uniform Si layers by 5.14 times. This approach provides a framework for physicists and biologists to develop the future generation of medical diagnostic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zandoná AF, Zero DT (2006) Diagnostic tools for early caries detection. J Am Dental Assoc 137(12):1675–1684. https://doi.org/10.14219/jada.archive.2006.0113

  2. Chen Q, He Z, Mao F, Pei H, Cao H, Liu X (2020) Diagnostic technologies for covid-19: a review. RSC Adv 10(58):35257–35264. https://doi.org/10.1039/d0ra06445a

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104(3):589–620. https://doi.org/10.1093/brain/104.3.589

    Article  CAS  PubMed  Google Scholar 

  4. Bird-Lieberman EL, Fitzgerald RC (2009) Early diagnosis of Oesophageal cancer. Br J Cancer 101(1):1–6. https://doi.org/10.1038/sj.bjc.6605126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L (2017) Early diagnosis of breast cancer Sensors 17(7):1572. https://doi.org/10.3390/s17071572

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  6. Wang Y, Zeng S, Crunteanu A, **e Z, Humbert G, Ma L, Wei Y, Brunel A, Bessette B, Orlianges J-C, Lalloué F, Schmidt OG, Yu N, Ho H-P (2021) Targeted sub-attomole cancer biomarker detection based on phase singularity 2D nanomaterial-enhanced plasmonic biosensor. Nano-Micro Lett 13(1). https://doi.org/10.1007/s40820-021-00613-7

  7. Wang Z, Yu M, Li K, Mao H, Liu K, Li H (2022) Tunable Fano resonance-enhanced surface plasmon biosensor based on MXene/mos2 heterostructure. Opt Mater 133:112966. https://doi.org/10.1016/j.optmat.2022.112966

    Article  CAS  Google Scholar 

  8. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and Chemical Sensing Applications. Chem Soc Rev 43(10):3426. https://doi.org/10.1039/c3cs60479a

    Article  CAS  PubMed  Google Scholar 

  9. Law W-C, Yong K-T, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on Plasmonic Enhancement. ACS Nano 5(6):4858–4864. https://doi.org/10.1021/nn2009485

    Article  CAS  PubMed  Google Scholar 

  10. Lee KS, Lee M, Byun KM, Lee IS (2011) Surface plasmon resonance biosensing based on target-responsive mobility switch of magnetic nanoparticles under Magnetic Fields. J Mater Chem 21(13):5156. https://doi.org/10.1039/c0jm03770b

    Article  CAS  Google Scholar 

  11. Zhang P, Wang J, Chen G, Shen J, Li C, Tang T (2021) A high-sensitivity SPR sensor with bimetal/silicon/two-dimensional material structure: a theoretical analysis. Photonics 8(7):270. https://doi.org/10.3390/photonics8070270

    Article  CAS  ADS  Google Scholar 

  12. Hayashi S, Nesterenko DV, Rahmouni A, Sekkat Z (2016) Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes. Appl Phys Lett 108 (5):051101. https://doi.org/10.1063/1.4940984

  13. Huang T, Zeng S, Zhao X, Cheng Z, Shum P (2018) Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared. Photonics 5(3):23. https://doi.org/10.3390/photonics5030023

    Article  CAS  Google Scholar 

  14. Zhu J, Gan S, Ruan B, Wu L, Cai H, Dai X, **ang Y (2018) Fano resonance in waveguide coupled surface exciton polaritons: theory and application in biosensor. Sensors 18(12):4437. https://doi.org/10.3390/s18124437

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Yang L, Wang J, Yang LZ et al (2018) Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci Rep 8:2560. https://doi.org/10.1038/s41598-018-20952-7

  16. Bao S, Jiang HD, Zheng GG (2021) Multiple Fano resonances in multilayer thin film-coupled attenuated total reflection configuration. Plasmonics 16:175–179. https://doi.org/10.1007/s11468-020-01281-w

    Article  CAS  Google Scholar 

  17. Lotfiani A, Mohseni SM, Ghanaatshoar M (2020) High-sensitive optoelectronic SPR biosensor based on Fano resonance in the integrated MIM junction and optical layers. Opt Commun 477:126323, ISSN 0030–4018. https://doi.org/10.1016/j.optcom.2020.126323

  18. Limonov MF (2021) Fano resonance for applications. Adv Opt Photon 13(3):703. https://doi.org/10.1364/aop.420731

    Article  Google Scholar 

  19. Zhang Y, Liu W, Li Z, Li Z, Cheng H, Chen S, Tian J (2018) High-quality-factor multiple Fano resonances for refractive index sensing. Opt Lett 43(8):1842. https://doi.org/10.1364/ol.43.001842

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Baquedano E, González MU, Paniagua-Domínguez R, Sánchez-Gil JA, Postigo PA (2017) Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity. Opt Express 25(14):15967. https://doi.org/10.1364/oe.25.015967

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zeng S, Sreekanth KV, Shang J, Yu T, Chen C, Yin F, Baillargeat D, Coquet P, Ho H, Kabashin AV, Yong K (2015) Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater 27(40):6163–6169. https://doi.org/10.1002/adma.201501754

    Article  CAS  PubMed  Google Scholar 

  22. Zeng S, Hu S, **a J, Anderson T, Dinh X-Q, Meng X-M, Coquet P, Yong K-T (2015) Graphene–mos2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuators, B Chem 207:801–810. https://doi.org/10.1016/j.snb.2014.10.124

    Article  CAS  Google Scholar 

  23. Jiang L, Zeng S, Xu Z, Ouyang Q, Zhang D, Chong PH, Coquet P, He S, Yong K (2017) Multifunctional hyperbolic nanogroove metasurface for submolecular detection. Small 13(30). https://doi.org/10.1002/smll.201700600

  24. Oumekloul Z, Zeng S, Achaoui Y, Mir A, Akjouj A (2021) Multi-layer mos2-based plasmonic gold nanowires at near-perfect absorption for energy harvesting. Plasmonics 16(5):1613–1621. https://doi.org/10.1007/s11468-021-01405-w

    Article  CAS  Google Scholar 

  25. Oumekloul Z, Lahlali S, Mir A, Akjouj A (2018) Evolution of LSPR of gold nanowire chain embedded in dielectric multilayers. Opt Mater 86:343–351. https://doi.org/10.1016/j.optmat.2018.10.020

    Article  CAS  ADS  Google Scholar 

  26. Narlawar S, Coudhury S, Gandhi S (2022) Magnetic properties-based biosensors for early detection of cancer. Biosens Based Adv Cancer Diagn 165–178. https://doi.org/10.1016/b978-0-12-823424-2.00010-7

  27. Mukherjee S, Das S (2022) Role of biosensor-based devices for diagnosis of Nononcological Disorders. Biosens Based Adv Cancer Diagn 245–256.  https://doi.org/10.1016/b978-0-12-823424-2.00020-x

  28. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ɛ and μ. Soviet Physics Uspekhi 10(4):509–514. https://doi.org/10.1070/pu1968v010n04abeh003699

    Article  ADS  Google Scholar 

  29. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303(5663):1494–1496. https://doi.org/10.1126/science.1094025

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Monticone F, Alù A (2017) Metamaterial, plasmonic and nanophotonic devices. Rep Prog Phys 80(3):036401. https://doi.org/10.1088/1361-6633/aa518f

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Prakash D, Gupta N (2021) Applications of metamaterial sensors: a review. Int J Microw Wirel Technol 14(1):19–33. https://doi.org/10.1017/s1759078721000039

    Article  Google Scholar 

  32. Schmid JH, Cheben P, Janz S, Lapointe J, Post E, Delâge A, Densmore A, Lamontagne B, Waldron P, Xu D-X (2008) Subwavelength grating structures in silicon-on-insulator waveguides. Adv Opt Technol 2008:1–8. https://doi.org/10.1155/2008/685489

    Article  Google Scholar 

  33. Halir R, Ortega-Monux A, Benedikovic D, Mashanovich GZ, Wanguemert-Perez JG, Schmid JH, Molina-Fernandez I, Cheben P (2018) Subwavelength-grating metamaterial structures for silicon photonic devices. Proc IEEE 106(12):2144–2157. https://doi.org/10.1109/jproc.2018.2851614

    Article  CAS  Google Scholar 

  34. Bock PJ, Cheben P, Schmid JH, Lapointe J, Delâge A, Janz S, Aers GC, Dan-**a Xu, Densmore A, Hall TJ (2010) Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt Express 18:20251–20262. https://doi.org/10.1364/OE.18.020251

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Wangüemert-Pérez JG, Hadij-ElHouati A, Sánchez-Postigo A, Leuermann J, Xu DX, Cheben P, Molina-Fernández Í (2019) Subwavelength structures for silicon photonics biosensing. Opt Laser Technol 109:437–448. https://doi.org/10.1016/j.optlastec.2018.07.071

  36. Naraine CM, Westwood-Bachman JN, Horvath C, Aktary M, Knights AP, Schmid JH, Cheben P, Bradley JDB (2023) Subwavelength grating metamaterial waveguides and ring resonators on a silicon nitride platform. Laser Photon Rev 17:2200216. https://doi.org/10.1002/lpor.202200216

    Article  CAS  ADS  Google Scholar 

  37. Wangberg R, Elser J, Narimanov EE, Podolskiy VA (2006) Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J Opt Soc Am B 23(3):498. https://doi.org/10.1364/josab.23.000498

    Article  CAS  ADS  Google Scholar 

  38. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076. https://doi.org/10.1364/JOSAA.12.001068

  39. Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13:1870–1876. https://doi.org/10.1364/JOSAA.13.001870

    Article  ADS  Google Scholar 

  40. Kuchment PA (1993) Floquet theory for partial differential equations. Springer Sci Bus Media 60

  41. Ribarsky MW (1997) Titanium dioxide (tio2) (rutile). Handbook Opt Constants Solids 795–804. https://doi.org/10.1016/b978-012544415-6.50042-x

  42. Singh S, Gupta BD (2010) Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas Sci Technol 21(11):115202. https://doi.org/10.1088/0957-0233/21/11/115202

    Article  CAS  ADS  Google Scholar 

  43. Dodge MJ (1984) Refractive properties of magnesium fluoride. Appl Opt 23(12):1980. https://doi.org/10.1364/ao.23.001980

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Tatian B (1984) Fitting refractive-index data with the Sellmeier dispersion formula. Appl Opt 23(24):4477. https://doi.org/10.1364/ao.23.004477

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Segelstein DJ (1981) The complex refractive index of water

  46. Kashyap R (2003) Why the χ(3) of silica increases after poling. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. https://doi.org/10.1364/bgpp.2003.pd5

    Article  Google Scholar 

  47. Islam MS, Kouzani AZ (2013) Variable incidence angle subwavelength grating SPR graphene biosensor. 2013 35th Annual Inter Conf IEEE Eng Med Biol Soc (EMBC). https://doi.org/10.1109/embc.2013.6610177

  48. Wei Y, Svedlindh P, Kostylev M, Ranjbar M, Dumas RK, Åkerman J (2015) Measuring acoustic mode resonance alone as a sensitive technique to extract antiferromagnetic coupling strength. Phys Rev B 92(6). https://doi.org/10.1103/physrevb.92.064418

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.C. and X.L. contributed to the simulation, data curation, formal analysis and visualization. T.H., Y.W. and S.Z. contributed to the conceptualization, investigation, validation and supervision. The first draft of the manuscript was written by K.C. and X.L, revised by T.H., Y.W. and S.Z. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuwen Zeng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kaifu Chen and **ngbing Li contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Li, X., Huang, T. et al. Fano Resonance-Plasmonic Biosensors Based on Strong Coupling of Hybrid Plasmonic-Photonic Modes. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02216-5

Keywords

Navigation