Log in

Surface Plasmon Resonance Intensification by Cavity-Ring Plasma Structure in the Giga-Hertz Regime

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel sub-wavelength plasma structure that can effectively enhance surface plasmon resonance (SPR) to achieve a significant local field. On the basis of a plasma ring structure, we add a slit and two thin plasma layers, working as a metal-insulator-metal (MIM) waveguide at a specific incident wave frequency and generate the Fabry-Perot resonance (FPR). The structure thus couples the incident wave energy to the vicinity of the slit and intensifies the SPR inside the plasma ring. In addition, we also find the coupling and competing between SPR and FPR. For the coupling mode, the average field enhancement in the ring is up to a factor of 9.7. Moreover, the optimized thickness of the plasma layer is much thinner than the skin depth of the plasma to ensure the incident wave easily entering the MIM waveguide. We further calculate the dispersion relationship of surface plasmon polaritons in the waveguide cavity. The simulation results and theoretical dispersion function are in good agreements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bliokh YP, Brodsky YL, Chashka KB, Felsteiner J, Slutsker YZ (2010) Broad-band polarization-independent absorption of electromagnetic waves by an overdense plasma. Phys Plasmas 17:083302

    Article  CAS  Google Scholar 

  2. Bliokh YP, Felsteiner J, Slutsker YZ (2005) Total absorption of an electromagnetic wave by an overdense plasma. Phys Rev Lett 95:165003

    Article  CAS  PubMed  Google Scholar 

  3. Sternberg N, Smolyakov AI (2009) Resonant transmission of electromagnetic waves in multilayer dense-plasma structures. IEEE Trans Plasma Sci 37:1251–1260

    Article  Google Scholar 

  4. Prinsloo DS, Maaskant R, Ivashina MV, Meyer P (2014) Mixed-mode sensitivity analysis of a combined differential and common mode active receiving antenna providing near-hemispherical field-of-view coverage. IEEE Trans Antennas Propag 62:3951–3961

    Article  Google Scholar 

  5. Brauner T, Vogt R, Bachtold W (2003) A differential active patch antenna element for array applications. IEEE Microw Compon Lett 13:161–163

    Article  Google Scholar 

  6. Padros N, Ortigosa JI, Baker J, Iskander MF, Thornberg B (1997) Comparative study of high-performance GPS receiving antenna designs. IEEE Trans Antennas Propag 45:698–706

    Article  Google Scholar 

  7. Chen K, Yang Z, Feng Y, Zhu B, Zhao J, Jiang T (2015) Improving microwave antenna gain and bandwidth with phase compensation metasurface. AIP Adv 5:067152

    Article  Google Scholar 

  8. Duerr W, Menzel W, Schumacher H (1997) A low-noise active receiving antenna using a SiGe HBT. IEEE Microw Guid Wave Lett 7:63–65

    Article  Google Scholar 

  9. Patterson CE, Khan WT, Ponchak GE (2012) A (2012) 60-GHz active receiving switched-beam antenna array with integrated Butler matrix and GaAs amplifiers. IEEE Trans Microw Theory Tech 60:3599–3607

    Article  CAS  Google Scholar 

  10. Messiaen AM, Vandenplas PE (1967) Theory and experiments of the enhanced radiation from a plasma-coated antenna. Electron Lett 3:26–27

    Article  CAS  Google Scholar 

  11. Wang CS, Li XA, Jiang BH (2015) The enhancement mechanism of thin plasma layer on antenna radiation. Appl Phys Lett 106:102901

    Article  CAS  Google Scholar 

  12. Kong FR et al (2018) Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation. Plasma Sci Technol 20:014017

    Article  CAS  Google Scholar 

  13. Kong FR et al (2018) Experimental and numerical studies on the receiving gain enhancement modulated by a sub-wavelength plasma layer. Plasma Sci Technol 20:095504

    Article  CAS  Google Scholar 

  14. Sugai H, Ghanashev I (1998) High-density flat plasma production based on surface waves. Plasma Sci Technol 7:192–205

    Article  CAS  Google Scholar 

  15. Xu X, Liu F (2008) Visual phenomena of surface plasmon polaritons at the dielectric-plasma interface. Appl Phys Lett 92:011501

    Article  CAS  Google Scholar 

  16. Sakhnenko NK, Stogniy NP (2011) Near-field pattern images of a cylindrical plasma column. IEEE trans. Plasma Sci 39:2552–2553

    Article  Google Scholar 

  17. Zhang L, Ouyang JT (2016) Numerical investigation of a microwave-band surface plasmon excited on an overdense plasma cylinder. J Appl Phys 49:195105

    Google Scholar 

  18. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant W, García de Abajo FJ (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401

    Article  CAS  Google Scholar 

  19. Love JC, Gates BD, Wolfe DB, Paul KE, Whitesides GM (2002) Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett 2:891–894

    Article  CAS  Google Scholar 

  20. Charnay C, Lee A, Man S-Q, Moran CE, Radloff C, Bradley RK, Halas NJJ (2003) Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties. Phys Chem B 107:7327–7333

    Article  CAS  Google Scholar 

  21. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5:119–124

    Article  CAS  PubMed  Google Scholar 

  22. Mansuripur M, **e Y, Zakharian AR et al (2004) Transmission of light through slit apertures in metallic films. Opt Express 12:6106–6121

    Article  PubMed  Google Scholar 

  23. Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y, He S (2009) Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna opt. Lett. 34:16–18

    CAS  Google Scholar 

  25. Qiu SL, Li YP, J. (2009) Q-factor instability and its explanation in the staircased FDTD simulation of high-Q circular cavity. Opt Soc Am B 26:1664–1674

    Article  CAS  Google Scholar 

  26. Economou EN (1969) Surface plasmons in thin films Phys. Rev. 182:539–554

    Google Scholar 

Download references

Funding

This work has been supported partially by the National Natural Science Foundation of China (Grant Nos. 1187050396, 11875118, 41674165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aogang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, B., Wang, X., Li, B. et al. Surface Plasmon Resonance Intensification by Cavity-Ring Plasma Structure in the Giga-Hertz Regime. Plasmonics 15, 1591–1597 (2020). https://doi.org/10.1007/s11468-020-01180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01180-0

Keywords

Navigation