Log in

Insight into the growth mechanism of black phosphorus

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) black phosphorus (BP) has attracted great attention in recent years in fundamental research as well as optoelectronics applications. The controllable synthesis of high-quality BP is vital to the investigation of its intrinsic physical properties and versatile applications. Originally, BP was mostly synthesized under high temperatures and pressures. Subsequently, metal flux, wet chemical and chemical vapor transport (CVT) methods had been appeared successively. The pulsed laser deposition (PLD) and CVT methods have been used to prepare high-quality BP thin films on silicon substrates, which is significant for its monolithic integration and practical applications. To meet the demand of the scalable applications of BP, the direct preparation of BP films on dielectric substrates that avoids additional transfer process, is crucial to high-performance device implementation. In this review, the growing methods and corresponding mechanisms of BP are summarized and analyzed. Meanwhile, the view on the controllable growth of large-area, high-quality BP films is envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pfitzner, M. F. Brau, J. Zweck, G. Brunklaus, and H. Eckert, Phosphorus nanorods-two allotropic modifications of a long-known element, Angew. Chem. Int. Ed. 43(32), 4228 (2004)

    Article  Google Scholar 

  2. F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and R. Weihrich, Die erweiterte stabilitätsreihe der phosphorallotropee, Angew. Chem. 126(43), 11813 (2014)

    Article  ADS  Google Scholar 

  3. M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, and G. Seifert, Faserförmiger roter phosphor, Angew. Chem. 117(46), 7788 (2005)

    Article  ADS  Google Scholar 

  4. N. Eckstein, A. Hohmann, R. Weihrich, T. Nilges, and P. Schmidt, Synthesis and phase relations of single-phase fibrous phosphorus, Z. Anorg. Allg. Chem. 639(15), 2741 (2013)

    Article  Google Scholar 

  5. G. Natta and L. Passerini, The crystal structure of white phosphorus, Nature 125(3158), 707 (1930)

    Article  ADS  Google Scholar 

  6. R. L. Keiter and C. P. Gamage, Combustion of white phosphorus, J. Chem. Educ. 78(7), 908 (2001)

    Article  Google Scholar 

  7. S. Zhang, H. J. Qian, Z. Liu, H. Ju, Z. Y. Lu, H. Zhang, L. Chi, and S. Cui, Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies, Angew. Chem. Int. Ed. 58(6), 1659 (2019)

    Article  Google Scholar 

  8. C. M. Fung, C. C. Er, L. L. Tan, A. R. Mohamed, and S. P. Chai, Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation, Chem. Rev. 122(3), 3879 (2022)

    Article  Google Scholar 

  9. Z. Sun, B. Zhang, Y. Zhao, M. Khurram, and Q. Yan, Synthesis, exfoliation, and transport properties of quasi-1D van der Waals fibrous red phosphorus, Chem. Mater. 33(15), 6240 (2021)

    Article  Google Scholar 

  10. Z. Zhu, P. Cui, X. Cai, M. **a, Y. Jia, S. Zhang, and Z. Zhang, Red phosphorus in its two-dimensional limit: Novel clathrates with varying band gaps and superior chemical stabilities, Nanoscale 10(29), 13969 (2018)

    Article  Google Scholar 

  11. W. Hittorf, Zur Kenntniss des Phosphors, Annalen der Physik und Chemie 202(10), 193 (1865)

    Article  ADS  Google Scholar 

  12. L. Zhang, H. Huang, Z. Lv, L. Li, M. Gu, X. Zhao, B. Zhang, Y. Cheng, and J. Zhang, Phonon properties of bulk violet phosphorus single crystals: Temperature and pressure evolution, ACS Appl. Electron. Mater. 3(3), 1043 (2021)

    Article  Google Scholar 

  13. L. Zhang, H. Huang, B. Zhang, M. Gu, D. Zhao, X. Zhao, L. Li, J. Zhou, K. Wu, Y. Cheng, and J. Zhang, Structure and properties of violet phosphorus and its phosphorene exfoliation, Angew. Chem. Int. Ed. 59(3), 1074 (2020)

    Article  Google Scholar 

  14. L. Zhang, M. Gu, L. Li, X. Zhao, C. Fu, T. Liu, X. Xu, Y. Cheng, and J. Zhang, High yield synthesis of violet phosphorus crystals, Chem. Mater. 32(17), 7363 (2020)

    Article  Google Scholar 

  15. R. Zhao, S. Liu, X. Zhao, M. Gu, Y. Zhang, M. **, Y. Wang, Y. Cheng, and J. Zhang, Violet phosphorus quantum dots, J. Mater. Chem. A 10(1), 245 (2021)

    Article  Google Scholar 

  16. X. Chen, J. S. Ponraj, D. Fan, and H. Zhang, An overview of the optical properties and applications of black phosphorus, Nanoscale 12(6), 3513 (2020)

    Article  Google Scholar 

  17. R. Gusmão, Z. Sofer, and M. Pumera, Black phosphorus rediscovered: From bulk material to monolayers, Angew. Chem. Int. Ed. 56(28), 8052 (2017)

    Article  Google Scholar 

  18. J. C. Jamieson, Crystal structures adopted by black phosphorus at high pressures, Science 139(356), 1291 (1963)

    Article  ADS  Google Scholar 

  19. W. Lei, G. Liu, J. Zhang, and M. Liu, Black phosphorus nanostructures: Recent advances in hybridization, do** and functionalization, Chem. Soc. Rev. 46(12), 3492 (2017)

    Article  Google Scholar 

  20. P. W. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7), 1344 (1914)

    Article  Google Scholar 

  21. B. M. L. P. A. G. O’hare, B. M. Lewis, and I. Shirotani, Thermodynamic stability of orthorhombic black phosphorus, Thermochim. Acta 129(1), 57 (1988)

    Article  Google Scholar 

  22. M. Zhao, H. Qian, X. Niu, W. Wang, L. Guan, J. Sha, and Y. Wang, Growth mechanism and enhanced yield of black phosphorus microribbons, Cryst. Growth Des. 16(2), 1096 (2016)

    Article  Google Scholar 

  23. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    Article  ADS  Google Scholar 

  24. V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B 89(23), 235319 (2014)

    Article  ADS  Google Scholar 

  25. X. Liu, K. W. Ang, W. Yu, J. He, X. Feng, Q. Liu, H. Jiang, Dan Tang, J. Wen, Y. Lu, W. Liu, P. Cao, S. Han, J. Wu, W. Liu, X. Wang, D. Zhu, and Z. He, Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature, Sci. Rep. 6(1), 24920 (2016)

    Article  ADS  Google Scholar 

  26. G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou, Z. Wu, W. K. Wong, T. Han, J. Lin, Y. Cai, R. Lortz, and N. Wang, Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus, Nano Lett. 16(12), 7768 (2016)

    Article  ADS  Google Scholar 

  27. Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun, Y. Yao, S. Li, Q. Bao, H. Zhang, and Y. Zhang, Field-induced N-do** of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility, Adv. Funct. Mater. 27(38), 1702211 (2017)

    Article  Google Scholar 

  28. X. Feng, X. Huang, L. Chen, W. C. Tan, L. Wang, and K. W. Ang, High mobility anisotropic black phosphorus nanoribbon field-effect transistor, Adv. Funct. Mater. 28(28), 1801524 (2018)

    Article  Google Scholar 

  29. G. Wang, Z. Guo, C. Chen, W. Yu, B. Xu, and B. Lin, Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells, Sol. Energy 236, 576 (2022)

    Article  ADS  Google Scholar 

  30. M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett. 14(6), 3347 (2014)

    Article  ADS  Google Scholar 

  31. W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator, Nano Lett. 15(3), 1883 (2015)

    Article  ADS  Google Scholar 

  32. Z. Sobiesierski and R. T. Phillips, A time-resolved photoluminescence study of amorphous phosphorus, Solid State Commun. 60(1), 25 (1986)

    Article  ADS  Google Scholar 

  33. R. J. Suess, J. D. Hart, E. Leong, M. Mittendorff, and T. E. Murphy, Black phosphorus frequency mixer for infrared optoelectronic signal processing, APL Photonics 4(3), 034502 (2019)

    Article  ADS  Google Scholar 

  34. G. Hu, T. Albrow-Owen, X. **, A. Ali, Y. Hu, R. C. T. Howe, K. Shehzad, Z. Yang, X. Zhu, R. I. Woodward, T. C. Wu, H. Jussila, J. B. Wu, P. Peng, P. H. Tan, Z. Sun, E. J. R. Kelleher, M. Zhang, Y. Xu, and T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics, Nat. Commun. 8(1), 278 (2017)

    Article  ADS  Google Scholar 

  35. X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, and F. **a, Widely tunable black phosphorus mid-infrared photodetector, Nat. Commun. 8(1), 1672 (2017)

    Article  ADS  Google Scholar 

  36. M. Valt, M. Caporali, B. Fabbri, A. Gaiardo, S. Krik, E. Iacob, L. Vanzetti, C. Malagu, M. Banchelli, C. D’Andrea, M. Serrano-Ruiz, M. Vanni, M. Peruzzini, and V. Guidi, Air stable nickel-decorated black phosphorus and its room-temperature chemiresistive gas sensor capabilities, ACS Appl. Mater. Interfaces 13(37), 44711 (2021)

    Article  Google Scholar 

  37. D. An, X. Zhang, Z. Bi, W. Shan, H. Zhang, S. **a, and M. Qiu, Low-dimensional black phosphorus in sensor applications: Advances and challenges, Adv. Funct. Mater. 31(52), 2106484 (2021)

    Article  Google Scholar 

  38. J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. **ong, and Y. Cui, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries, Adv. Mater. 28(44), 9797 (2016)

    Article  Google Scholar 

  39. Y. Wang, M. He, S. Ma, C. Yang, M. Yu, G. Yin, and P. Zuo, Low-temperature solution synthesis of black phosphorus from red phosphorus: Crystallization mechanism and lithium ion battery applications, J. Phys. Chem. Lett. 11(7), 2708 (2020)

    Article  Google Scholar 

  40. J. Zhu, G. **ao, and X. Zuo, Two-dimensional black phosphorus: An emerging anode material for lithiumion batteries, Nano-Micro Lett. 12(1), 120 (2020)

    Article  ADS  Google Scholar 

  41. L. Bai, X. Wang, S. Tang, Y. Kang, J. Wang, Y. Yu, Z. K. Zhou, C. Ma, X. Zhang, J. Jiang, P. K. Chu, and X. F. Yu, Black phosphorus/platinum heterostructure: A highly efficient photocatalyst for solar-driven chemical reactions, Adv. Mater. 30(40), 1803641 (2018)

    Article  Google Scholar 

  42. J. Miao, L. Zhang, and C. Wang, Black phosphorus electronic and optoelectronic devices, 2D Mater. 6(3), 032003 (2019)

    Article  Google Scholar 

  43. T. Yin, L. Long, X. Tang, M. Qiu, W. Liang, R. Cao, Q. Zhang, D. Wang, and H. Zhang, Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation, Adv. Sci. (Weinh.) 7(19), 2001431 (2020)

    Google Scholar 

  44. L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, and H. Zhang, Synthesis techniques, optoelectronic properties, and broadband photodetection of thin-film black phosphorus, Adv. Opt. Mater. 8(15), 2000045 (2020)

    Article  Google Scholar 

  45. Z. **e, M. Peng, R. Lu, X. Meng, W. Liang, Z. Li, M. Qiu, B. Zhang, G. Nie, N. **e, H. Zhang, and P. N. Prasad, Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy, Light Sci. Appl. 9(1), 161 (2020)

    Article  ADS  Google Scholar 

  46. C. **ng, S. Chen, M. Qiu, X. Liang, Q. Liu, Q. Zou, Z. Li, Z. **e, D. Wang, B. Dong, L. Liu, D. Fan, and H. Zhang, Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy, Adv. Healthc. Mater. 7(7), 1701510 (2018)

    Article  Google Scholar 

  47. F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. **e, D. Yang, M. Qiu, H. Zhang, and Z. G. Li, Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells, J. Mater. Chem. B 5(27), 5433 (2017)

    Article  Google Scholar 

  48. J. O. Island, G. A. Steele, H. S. J. v. d. Zant, and A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus, 2D Mater. 2(1), 011002 (2015)

    Article  Google Scholar 

  49. Y. Y. Illarionov, M. Waltl, G. Rzepa, J. S. Kim, S. Kim, A. Dodabalapur, D. Akinwande, and T. Grasser, Long-term stability and reliability of black phosphorus field-effect transistors, ACS Nano 10(10), 9543 (2016)

    Article  Google Scholar 

  50. D. K. Sang, H. Wang, Z. Guo, N. **e, and H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications, Adv. Funct. Mater. 29(45), 1903419 (2019)

    Article  Google Scholar 

  51. A. Favron, E. Gaufres, F. Fossard, A. L. Phaneuf-L’Heureux, N. Y. Tang, P. L. Levesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, Photooxidation and quantum confinement effects in exfoliated black phosphorus, Nat. Mater. 14(8), 826 (2015)

    Article  ADS  Google Scholar 

  52. G. Kim, D. Kim, Y. Choi, A. Ghorai, G. Park, and U. Jeong, New approaches to produce large-area single crystal thin films, Adv. Mater. 35(4), 2203373 (2022)

    Article  Google Scholar 

  53. A. Zavabeti, A. Jannat, L. Zhong, A. A. Haidry, Z. Yao, and J. Z. Ou, Two-dimensional materials in large-areas: Synthesis, properties and applications, Nano-Micro Lett. 12(1), 66 (2020)

    Article  ADS  Google Scholar 

  54. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)

    Article  ADS  Google Scholar 

  55. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Article  Google Scholar 

  56. W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. **, and Z. Zhang, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization, Nano Res. 7(6), 853 (2014)

    Article  Google Scholar 

  57. J. Kang, S. A. Wells, J. D. Wood, J.-H. Lee, X. Liu, C. R. Ryder, J. Zhu, Jeffrey R Guest, C. A. Husko, and M. C. Hersam, Stable aqueous dispersions of optically and electronically active phosphorene, Proc. Natl. Acad. Sci. USA 113(42), 11688 (2016)

    Article  ADS  Google Scholar 

  58. D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O’Regan, G. S. Duesberg, V. Nicolosi, and J. N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun. 6(1), 8563 (2015)

    Article  ADS  Google Scholar 

  59. P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Kho**, High-quality black phosphorus atomic layers by liquid-phase exfoliation, Adv. Mater. 27(11), 1887 (2015)

    Article  Google Scholar 

  60. X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. **a, Highly anisotropic and robust excitons in monolayer black phosphorus, Nat. Nanotechnol. 10, 517 (2015)

    Article  ADS  Google Scholar 

  61. L. Q. Sun, M. J. Li, K. Sun, S. H. Yu, R. S. Wang, and H. M. **e, Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries, J. Phys. Chem. C 116(28), 14772 (2012)

    Article  Google Scholar 

  62. N. Antonatos, D. Bousa, S. Shcheka, S. M. Beladi-Mousavi, M. Pumera, and Z. Sofer, In situ do** of black phosphorus by high-pressure synthesis, Inorg. Chem. 58(15), 10227 (2019)

    Article  Google Scholar 

  63. H. **ang, Y. T. Nie, H. C. Zheng, X. H. Sun, X. L. Sun, and Y. Song, The mechanism of structural changes and crystallization kinetics of amorphous red phosphorus to black phosphorus under high pressure, Chem. Commun. (Camb.) 55(56), 8094 (2019)

    Article  Google Scholar 

  64. Y. Akahama, M. Miyakawa, T. Taniguchi, A. Sano-Furukawa, S. Machida, and T. Hattori, Structure refinement of black phosphorus under high pressure, J. Chem. Phys. 153(1), 014704 (2020)

    Article  Google Scholar 

  65. J. K. Burdett, and S. Lee, The pressure-induced black phosphorus to A7 (arsenic) phase transformation: An analysis using the concept of orbital symmetry conservation, J. Solid State Chem. 44(3), 415 (1982)

    Article  ADS  Google Scholar 

  66. D. Scelta, A. Baldassarre, M. Serrano-Ruiz, K. Dziubek, A. B. Cairns, M. Peruzzini, R. Bini, and M. Ceppatelli, Interlayer bond formation in black phosphorus at high pressure, Angew. Chem. Int. Ed. 56, 14135 (2017)

    Article  Google Scholar 

  67. H. Krebs, H. Weitz, and K. H. Worms, Über die struktur und die eigenschaften der halbmetalle. VIII. Die katalytische darstellung des schwarzen phosphors, Z. Anorg. Allg. Chem. 280(1–3), 119 (1955)

    Article  Google Scholar 

  68. M. Baba, F. Izumida, Y. Takeda, and A. Morita, Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology, Jpn. J. Appl. Phys. 28(6R), 1019 (1989)

    Article  ADS  Google Scholar 

  69. M. Nagao, A. Hayashi, and M. Tatsumisago, All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 196(16), 6902 (2011)

    Article  ADS  Google Scholar 

  70. F. Zhou, L. Ouyang, M. Zeng, J. Liu, H. Wang, H. Shao, and M. Zhu, Growth mechanism of black phosphorus synthesized by different ball milling techniques, J. Alloys Compd. 784, 339 (2019)

    Article  Google Scholar 

  71. X. Zhu, T. Zhang, Z. Sun, H. Chen, J. Guan, X. Chen, H. Ji, P. Du, and S. Yang, Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution, Adv. Mater. 29(17), 1605776 (2017)

    Article  Google Scholar 

  72. N. V. Chien, H. Shin, and J. Y. Song, Sn-assisted solid state crystallization of red phosphorus to black phosphorus, Scr. Mater. 177, 128 (2020)

    Article  Google Scholar 

  73. B. Tian, B. Tian, B. Smith, M. C. Scott, Q. Lei, R. Hua, Y. Tian, and Y. Liu, Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution, Proc. Natl. Acad. Sci. USA 115(17), 4345 (2018)

    Article  ADS  Google Scholar 

  74. B. Tian, B. Tian, B. Smith, M. C. Scott, R. Hua, Q. Lei, and Y. Tian, Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K, Nat. Commun. 9(1), 1397 (2018)

    Article  ADS  Google Scholar 

  75. T. Nilges, M. Kersting, and T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals, J. Solid State Chem. 181(8), 1707 (2008)

    Article  ADS  Google Scholar 

  76. S. Lange, P. Schmidt, and T. Nilges, Au3SnP7@black phosphorus: An easy access to black phosphorus, Inorg. Chem. 46(10), 4028 (2007)

    Article  Google Scholar 

  77. F. T. Johra and W. G. Jung, Synthesis of black phosphorus via a facile vapor transfer method, Electron. Mater. Lett. 15(5), 639 (2019)

    Article  ADS  Google Scholar 

  78. N. Izquierdo, J. C. Myers, N. C. A. Seaton, S. K. Pandey, and S. A. Campbell, Thin-film deposition of surface passivated black phosphorus, ACS Nano 13(6), 7091 (2019)

    Article  Google Scholar 

  79. M. Wentink, J. Gaberle, M. Aghajanian, A. A. Mostofi, N. J. Curson, J. Lischner, S. R. Schofield, A. L. Shluger, and A. J. Kenyon, Substitutional tin acceptor states in black phosphorus, J. Phys. Chem. C 125(41), 22883 (2021)

    Article  Google Scholar 

  80. N. Antonatos, J. Sturala, V. Mazanek, D. Sedmidubsky, M. Vesely, K. Ruzicka, J. Hejtmanek, P. Levinsky, and Z. Sofer, Black phosphorus: Fundamental properties and influence of impurities induced by its synthesis, ACS Appl. Mater. Interfaces 14(30), 34867 (2022)

    Article  Google Scholar 

  81. Q. Xu, Y. Zhu, C. Shi, N. Zhang, and T. **e, The preparation of black phosphorus in RP/Sn/I2 system: its nucleation agent and relatively optimal temperature program, J. Mater. Sci. Mater. Electron. 31(21), 19093 (2020)

    Article  Google Scholar 

  82. M. M. Shatruk, K. A. Kovnir, A. V. Shevelkov, I. A. Presniakov, and B. A. Popovkin, First tin pnictide halides Sn24P19.3I8 and Sn24As19.3I8: Synthesis and the clathrate-i type of the crystal structure, Inorg. Chem. 38(15), 3455 (1999)

    Article  Google Scholar 

  83. V. V. Novikov, A. V. Matovnikov, D. V. Avdashchenko, N. V. Mitroshenkov, E. Dikarev, S. Takamizawa, M. A. Kirsanova, and A. V. Shevelkov, Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8, J. Alloys Compd. 520, 174 (2012)

    Article  Google Scholar 

  84. S. Li, X. Liu, X. Fan, Y. Ni, J. Miracle, N. Theodoropoulou, J. Sun, S. Chen, B. Lv, and Q. Yu, New strategy for black phosphorus crystal growth through ternary clathrate, Cryst. Growth Des. 17(12), 6579 (2017)

    Article  Google Scholar 

  85. Z. Chen, Y. Zhu, J. Lei, W. Liu, Y. Xu, and P. Feng, A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization, CrystEngComm 19(47), 7207 (2017)

    Article  Google Scholar 

  86. Z. Zhang, D. H. **ng, J. Li, and Q. Yan, Hittorf’s phosphorus: The missing link during transformation of red phosphorus to black phosphorus, CrystEngComm 19(6), 905 (2017)

    Article  Google Scholar 

  87. G. Tiouitchi, M. A. Ali, A. Benyoussef, M. Hamedoun, A. Lachgar, M. Benaissa, A. Kara, A. Ennaoui, A. Mahmoud, F. Boschini, H. Oughaddou, A. El Kenz, and O. Mounkachi, An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus, Mater. Lett. 236, 56 (2019)

    Article  Google Scholar 

  88. Y. Yu, B. **ng, D. Wang, L. Guan, X. Niu, J. Yao, X. Yan, S. Zhang, Y. Liu, X. Wu, J. Sha, and Y. Wang, Improvement in the quality of black phosphorus by selecting a mineralizer, Nanoscale 11(42), 20081 (2019)

    Article  Google Scholar 

  89. Y. Xu, X. Shi, Y. Zhang, H. Zhang, Q. Zhang, Z. Huang, X. Xu, J. Guo, H. Zhang, L. Sun, Z. Zeng, A. Pan, and K. Zhang, Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon, Nat. Commun. 11(1), 1330 (2020)

    Article  ADS  Google Scholar 

  90. D. Han, Q. Liu, Q. Zhang, J. Ji, S. Sang, and B. Xu, Synthesis of highly crystalline black phosphorus thin films on GaN, Nanoscale 12(48), 24429 (2020)

    Article  Google Scholar 

  91. Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng, Z. Yang, S. P. Lau, X. H. Chen, and J. Hao, Large-scale growth of few-layer two-dimensional black phosphorus, Nat. Mater. 20(9), 1203 (2021)

    Article  ADS  Google Scholar 

  92. P. R. Willmott and J. R. Huber, Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72(1), 315 (2000)

    Article  ADS  Google Scholar 

  93. Z. Yang and J. Hao, Progress in pulsed laser deposited two-dimensional layered materials for device applications, J. Mater. Chem. C 4(38), 8859 (2016)

    Article  Google Scholar 

  94. Z. Yang, J. Hao, S. Yuan, S. Lin, H. M. Yau, J. Dai, and S. P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition, Adv. Mater. 27(25), 3748 (2015)

    Article  Google Scholar 

  95. J. B. Smith, D. Hagaman, and H. F. Ji, Growth of 2D black phosphorus film from chemical vapor deposition, Nanotechnology 27(21), 215602 (2016)

    Article  ADS  Google Scholar 

  96. X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S.-I. Karato, G. Pan, M. L. Lee, J. Cha, H. Wang, and F. **a, Synthesis of thin-film black phosphorus on a flexible substrate, 2D Mater. 2(3), 031002 (2015)

    Article  Google Scholar 

  97. C. Li, Y. Wu, B. Deng, Y. **e, Q. Guo, S. Yuan, X. Chen, M. Bhuiyan, Z. Wu, K. Watanabe, T. Taniguchi, H. Wang, J. J. Cha, M. Snure, Y. Fei, and F. **a, Synthesis of crystalline black phosphorus thin film on sapphire, Adv. Mater. 30(6), 1703748 (2018)

    Article  Google Scholar 

  98. C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, and M. C. Hersam, Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry, Nat. Chem. 8(6), 597 (2016)

    Article  Google Scholar 

  99. Y. Zhao, H. Wang, H. Huang, Q. **ao, Y. Xu, Z. Guo, H. **e, J. Shao, Z. Sun, W. Han, X. F. Yu, P. Li, and P. K. Chu, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed. 16(55), 5003 (2016)

    Article  Google Scholar 

  100. Y. Y. Illarionov, M. Waltl, G. Rzepa, T. Knobloch, J. S. Kim, D. Akinwande, and T. Grasser, Highly-stable black phosphorus field-effect transistors with low density of oxide traps, npj 2D Mater. Appl. 1(1) (2017)

  101. J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Effective passivation of exfoliated black phosphorus transistors against ambient degradation, Nano Lett. 14(12), 6964 (2014)

    Article  ADS  Google Scholar 

  102. B. Wan, B. Yang, Y. Wang, J. Zhang, Z. Zeng, Z. Liu, and W. Wang, Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation, Nanotechnology 26(43), 435702 (2015)

    Article  ADS  Google Scholar 

  103. Y. Xu, J. Yuan, L. Fei, X. Wang, Q. Bao, Y. Wang, K. Zhang, and Y. Zhang, Selenium-doped black phosphorus for high-responsivity 2D photodetectors, Small 12(36), 5000 (2016)

    Article  Google Scholar 

  104. B. Yang, B. Wan, Q. Zhou, Y. Wang, W. Hu, W. Lv, Q. Chen, Z. Zeng, F. Wen, J. **ang, S. Yuan, J. Wang, B. Zhang, W. Wang, J. Zhang, B. Xu, Z. Zhao, Y. Tian, and Z. Liu, Te-doped black phosphorus field-effect transistors, Adv. Mater. 28(42), 9408 (2016)

    Article  Google Scholar 

  105. M. Zhao, X. Niu, L. Guan, H. Qian, W. Wang, J. Sha, and Y. Wang, Understanding the growth of black phosphorus crystals, CrystEngComm 18(40), 7737 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2021YFA1200804), the National Natural Science Foundation of China (Grant Nos. 61922082, 61875223, and 61927813). The support from the Vacuum Interconnected Nanotech Workstation (Nano-X) of Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Q., Li, J. et al. Insight into the growth mechanism of black phosphorus. Front. Phys. 18, 43603 (2023). https://doi.org/10.1007/s11467-023-1265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1265-7

Keywords

Navigation