Log in

“Soil arching” for piled embankments: insights from stress redistribution behaviour of DEM modelling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

For piled embankments, it is widely recognised that the majority of embankment load can be transferred to the piles through the “soil arching” mobilised in the embankment. To date, no consensus has been reached on the shape and composition of the “soil arching”. In light of this, a total of 131 2D trapdoor-like discrete element method models were conducted in this study to present the soil arching effect, stress state and deformation behaviours of the piled embankments. Then, in-depth discussions on the composition and mobilisation mechanism of “soil arching” were performed. The horizontal stress concentration caused by the lateral extrusion of embankment fill was considered to be the composition of the “soil arching”, while the vertical stress redistribution is only the result of load transfer induced by the “soil arching”. Afterwards, the criterion that comprehensively considers the redistribution behaviours of the vertical and horizontal stresses was proposed to determine the feature parameters of “soil arching”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abusharar SW, Zheng JJ, Chen BG (2009) A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotext Geomembr 27(1):39–52

    Article  Google Scholar 

  2. Aqoub K, Mohamed M, Sheehan T (2018) Analysis of sequential active and passive arching in granular soils. Int J Geotech Eng. https://doi.org/10.1080/19386362.2018.1473195

    Article  Google Scholar 

  3. Blanc M, Thorel L, Girout R, Almeida M (2014) Geosynthetic reinforcement of a granular load transfer platform above rigid inclusions: comparison between centrifuge testing and analytical modelling. Geosynth Int 21(1):37–52

    Article  Google Scholar 

  4. Cao WZ, Zheng JJ, Zhang J, Zhang RJ (2016) Field test of a geogrid-reinforced and floating pile-supported embankment. Geosynth Int 23(5):348–361

    Article  Google Scholar 

  5. Carlson BO (1987) Armerad Jord beräjningsprinciper för banker på pålar. Terranova, Distr. SGI., Linkö**

  6. Chen YM, Cao WP, Chen RP (2008) An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext Geomembr 26(2):164–174

    Article  Google Scholar 

  7. Chevalier B, Otani J (2010) 3-D arching effect in the trap-door problem: a comparison between X-Ray CT scanning and DEM analysis. In: Proceedings of GeoFlorida, pp 570–579

  8. Chevalier B, Combe G, Villard P (2012) Experimental and discrete element modeling studies of the trapdoor problem: influence of the macro-mechanical frictional parameters. Acta Geotech 7(1):15–39

    Article  Google Scholar 

  9. Eskişar T, Otani J, Hironaka J (2012) Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT. Geotext Geomembr 32:44–54

    Article  Google Scholar 

  10. Fagundes DF, Almeida MSS, Thorel L, Thorel L, Blanc M (2017) Load transfer mechanism and deformation of reinforced piled embankments. Geotext Geomembr 45(2):1–10

    Article  Google Scholar 

  11. Feng SJ, Ai SG, Chen HX (2017) Estimation of arching effect in geosynthetic-reinforced structures. Comput Geotech 87:188–197

    Article  Google Scholar 

  12. Filz GM, Smith ME (2006) Design of bridging layers in geosynthetic reinforced column-supported embankments. Contract Report VTRC 06-CR12. Virginia Transportation Research Council, Charlottesville

  13. Gao G, Meguid MA (2018) Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis. Geotext Geomembr 46(6):685–698

    Article  Google Scholar 

  14. Gao G, Meguid MA (2018) On the role of sphericity of falling rock clusters—insights from experimental and numerical investigations. Landslides 15(2):219–232

    Article  Google Scholar 

  15. Guido VA, Kneuppel JD, Sweeney MA (1987) Plate loading test on geogrid reinforced earth slabs. In: Proceedings of Geosynthetics’87, New Orleans, USA. IFAI, pp 216–225

  16. Girout R, Blanc M, Thorel L, Fagundes DF, Almeida MS (2016) Arching and deformation in a piled embankment: centrifuge tests compared to analytical calculations. J Geotech Geoenviron Eng 142(12):04016069

    Article  Google Scholar 

  17. Han J, Bhandari A, Wang F (2012) DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. Int J Geomech 12(4):340–350

    Article  Google Scholar 

  18. Han J, Gabr MA (2002) Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. J Geotech Geoenviron Eng 128(1):44–53

    Article  Google Scholar 

  19. Han J, Wang F, Al-Naddaf M, Xu C (2017) Progressive development of two-dimensional soil arching with displacement. Int J Geomech 17(12):04017112

    Article  Google Scholar 

  20. Han GX, Gong QM, Zhou SH (2015) Soil arching in a piled embankment under dynamic load. Int J Geomech 15(6):04014094

    Article  Google Scholar 

  21. Hewlett WJ, Randolph MF (1988) Analysis of piled embankment. Ground Eng 21(3):12–18

    Google Scholar 

  22. Iglesia GR, Einstein HH, Whitman RV (2013) Investigation of soil arching with centrifuge tests. J Geotech Geoenviron Eng 140(2):04013005

    Article  Google Scholar 

  23. Jenck O, Dias D, Kastner R (2009) Discrete element modelling of a granular platform supported by piles in soft soil-validation on a small scale model test and comparison to a numerical analysis in a continuum. Comput Geotech 36(6):917–927

    Article  Google Scholar 

  24. Kempfert HG, Zaeske D, Alexiew D (1999) Interations in reinforced bearing layers over partial supported underground. In: Barend FBJ et al (eds) Geotechnical engineering for transportation infrastructure. Balkema, Rotterdam, pp 1527–1532

    Google Scholar 

  25. Lai HJ, Zheng JJ, Zhang J, Zhang RJ, Cui L (2014) DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput Geotech 61:13–23

    Article  Google Scholar 

  26. Lai HJ, Zheng JJ, Zhang RJ, Cui MJ (2016) Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation. J Zhejiang Univ-Sci A (Appl Phys & Eng) 17(10):803–817

    Article  Google Scholar 

  27. Lai HJ, Zheng JJ, Zhang RJ, Cui MJ (2018) Classification and characteristics of soil arching structures in pile-supported embankments. Comput Geotech 98:153–171

    Article  Google Scholar 

  28. Liu HL, Kong GQ, Chu J, Ding XM (2015) Grouted gravel column supported highway embankment over soft clay: case study. Can Geotech J 52(11):1725–1733

    Article  Google Scholar 

  29. Low BK, Tang SK, Choa V (1993) Arching in piled embankments. J Geotech Eng 120(11):1917–1938

    Article  Google Scholar 

  30. Pan Y, Liu Y, Chen EJ (2018) Probabilistic investigation on defective jet-grouted cut-off wall with random geometric imperfections. Géotechnique 69(5):420–433

    Article  Google Scholar 

  31. Pan Y, Liu Y, **ao H, Lee FH, Phoon KK (2018) Effect of spatial variability on short-and long-term behaviour of axially-loaded cement-admixed marine clay column. Comput Geotech 94:150–168

    Article  Google Scholar 

  32. Rui R, van Tol F, **a XL, van Eekelen S, Hu G, **a YY (2016) Evolution of soil arching: 2D DEM simulations. Comput Geotech 73:199–209

    Article  Google Scholar 

  33. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  34. Tordesillas A, Walker DM, Lin Q (2010) Force cycles and force chains. Phys Rev E 81(1):011302

    Article  Google Scholar 

  35. van Eekelen SJM, Bezuijen A, van Tol AF (2015) Validation of analytical models for the design of basal reinforced piled embankments. Geotext Geomembr 43(1):56–81

    Article  Google Scholar 

  36. van Eekelen SJM, Bezuijen A, van Tol AF (2013) An analytical model for arching in piled embankments. Geotext Geomembr 39:78–102

    Article  Google Scholar 

  37. van Eekelen SJM, Bezuijen A, Lodder HJ, van Tol AF (2012) Model experiments on piled embankments. Part I. Geotext Geomembr 32:69–81

    Article  Google Scholar 

  38. Villard P, Chevalier B, Le Hello B, Combe G (2009) Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. Comput Geotech 36(5):709–917

    Article  Google Scholar 

  39. Wang F, Han J, Parsons RL, Corey R (2019) Performance of steel-reinforced high-density polyethylene pipes in soil during installation: a numerical study. Acta Geotech. https://doi.org/10.1007/s11440-019-00822-w

    Article  Google Scholar 

  40. Wang ZJ, Jacobs F, Ziegler M (2014) Visualization of load transfer behaviour between geogrid and sand using PFC2D. Geotext Geomembr 42(2):83–93

    Article  Google Scholar 

  41. **ang Y, Liu H, Zhang W, Chu J, Zhou D, **ao Y (2018) Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism. Tunn Undergr Space Technol 74:178–184

    Article  Google Scholar 

  42. Xu CJ, Liang LJ, Chen QZ, Luo WJ, Chen YF (2019) Experimental study of soil arching effect under seepage condition. Acta Geotech. https://doi.org/10.1007/s11440-019-00769-y

    Article  Google Scholar 

  43. Zhang W, Goh ATC (2016) Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci Front 7(1):45–52

    Article  Google Scholar 

  44. Zheng G, Yang XY, Zhou HZ, Chai JC (2019) Numerical modeling of progressive failure of rigid piles under an embankment load. Can Geotech J 56:23–34

    Article  Google Scholar 

  45. Zhou HZ, Diao Y, Zheng G, Han J, Jia R (2017) Failure modes and bearing capacity of rigid footings on soft ground reinforced by floating stone columns. Acta Geotech 12(5):1089–1103

    Article  Google Scholar 

  46. Zhou HZ, Zheng G, Liu JF, Yu XX, Yang XY, Zhang TQ (2019) Failure mechanism of rigid piles embedded in an inclined underlying stratum under an embankment load: centrifuge and numerical modelling. Acta Geotech. https://doi.org/10.1007/s11440-019-00825-7

    Article  Google Scholar 

  47. Zhou M, Wang F, Du YJ, Liu MD (2019) Laboratory evaluation of buried high-density polyethylene pipes subjected to localized ground subsidence. Acta Geotech 14(4):1081–1099

    Article  Google Scholar 

  48. Zhuang Y, Wang KY (2018) Finite-element analysis of arching in highway piled embankments subjected to moving vehicle loads. Géotechnique 68(10):857–868

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (No. 2016YFC0800200), the National Natural Science Foundation of China (NSFC) (Nos. 51708243, 51478201 and 51878313) and the China Postdoctoral Science Foundation (Nos. 2016M600595, 2018M632862 and 2018T110769). The authors would like to express their gratitude for these financial assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jie Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, HJ., Zheng, JJ., Cui, MJ. et al. “Soil arching” for piled embankments: insights from stress redistribution behaviour of DEM modelling. Acta Geotech. 15, 2117–2136 (2020). https://doi.org/10.1007/s11440-019-00902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00902-x

Keywords

Navigation