Log in

The concept and realization of nanostructure fabrication using free-standing metallic wires with rapid thermal annealing

  • Article
  • Condensed Matter Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Free-standing metallic nanostructures are considered to be highly relevant to many branches of science and technology with applications of three dimensional metallic nanostructures ranging from optical reflectors, actuators, and antenna, to free-standing electrodes, mechanical, optical, and electrical resonators and sensors. Strain-induced out-of-plane fabrication has emerged as an effective method which uses relaxation of strain-mismatched materials. In this work, we report a study of the thermal annealing-induced shape modification of free-standing nanostructures, which was achieved by introducing compositional or microstructural nonuniformity to the nanowires. In particular gradient, segmented and striped hetero-nanowires were grown by focused-ion-beam-induced chemical vapor deposition, followed by rapid thermal annealing in a N2 atmosphere. Various free-standing nanostructures were produced as a result of the crystalline/grain growth and stress relief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferain I, Colinge C A, Colinge J P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature, 2011, 479: 310–316

    Article  ADS  Google Scholar 

  2. Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376–379

    Article  ADS  Google Scholar 

  3. Gouma P, Kalyanasundaram K, **ao Y, et al. Nanosensor and breath analyzer for ammonia detection in exhaled human breath. Sensors J IEEE, 2010, 10: 49–53

    Article  Google Scholar 

  4. Tian B Z, Karni T, Qing Q, et al. Three-dimensional, flexible nanoscale field-eEffect transistors as localized bioprobes. Science, 2010, 329: 830–834

    Article  ADS  Google Scholar 

  5. Noda S, Tomoda K, Yamamoto N, et al. Full Three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289: 604–606

    Article  ADS  Google Scholar 

  6. Romans E J, Osley E J, Young L, et al. Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl Phys Lett, 2010, 97: 222506

    Article  ADS  Google Scholar 

  7. Zhang S, Fan W, Minhas B K, et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett, 2005, 94: 037402

    Article  ADS  Google Scholar 

  8. Fan K, Strikwerda A C, Tao H, et al. Stand-up magnetic metamaterials at terahertz frequencies. Opt Express, 2011, 19: 12619–12627

    Article  ADS  Google Scholar 

  9. Burckel D B, Wendt J R, Ten Eyck G A, et al. Micrometer-scale cubic unit cell 3D metamaterial layers. Adv Mater, 2010, 22: 5053–5057

    Article  Google Scholar 

  10. Chen C C, Hsiao C T, Sun S L, et al. Fabrication of three dimensional split ring resonators by stress-driven assembly method. Opt Express, 2012, 20: 9415–9420

    Article  ADS  Google Scholar 

  11. Rill M S, Plet C, Thiel M, et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater, 2008, 7: 543–546

    Article  ADS  Google Scholar 

  12. Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513–1515

    Article  ADS  Google Scholar 

  13. Cui A, Li W, Luo Q, et al. Free-standing nanostructures for three-dimensional superconducting nanodevices. Appl Phys Lett, 2012, 100: 143106

    Article  ADS  Google Scholar 

  14. Cui A, Li W, Luo Q, et al. Controllable three dimensional deformation of platinum nanopillars by focused-ion-beam irradiation. Microelectron Eng, 2012, 98: 409–413

    Article  Google Scholar 

  15. Cui A, Fenton J C, Li W X, et al. Ion-beam-induced bending of free-standing amorphous nanowires: The importance of the substrate material and charging. Appl Phys Lett, 2013, 102: 213112

    Article  ADS  Google Scholar 

  16. Luo J K, Huang R, He J H, et al. Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure. Sensors Actuators A-Phys, 2006, 132: 346–353

    Article  Google Scholar 

  17. Py C, Reverdy P, Doppler L, et al. Capillary origami: Spontaneous wrap** of a droplet with an elastic sheet. Phys Rev Lett, 2007, 98: 156103

    Article  ADS  Google Scholar 

  18. Lu Y W, Kim C J. Microhand for biological applications. Appl Phys Lett, 2006, 89: 164101

    Article  ADS  Google Scholar 

  19. Jager E W H, Inganäs O, Lundström I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science, 2000, 288: 2335–2338

    Article  ADS  Google Scholar 

  20. Iwase E, Shimoyama I. Multistep sequential batch assembly of three-dimensional ferromagnetic microstructures with elastic hinges. J Microelectromech Syst, 2005, 14: 1265–1271

    Article  Google Scholar 

  21. Leong T G, Zarafshar A M, Gracias D H. Three-dimensional fabrication at small size scales. Small, 2010, 6: 792–806

    Article  Google Scholar 

  22. Cui A, Li W, Shen T H, Yao Y, et al. Thermally induced shape modification of free-standing nanostructures for advanced functionalities. Sci Rep, 2013, 3: 2429

    ADS  Google Scholar 

  23. Utke I. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications. Oxford: Oxford University Press, 2012

    Google Scholar 

  24. Inkson B J, Dehm G. Thermal stability of Pt nanowires manufactured by Ga+ focused ion beam (FIB). In: Meldrum A, Roorda S, Bernas H, eds. Nanostructuring Materials with Energetic Beams. Warrendale, Pa.: MRS Online Proceedings Library, 2003. 777

    Google Scholar 

  25. Sheldon B W, Lau K H A, Rajamani A. Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J Appl Phys, 2001, 90: 5097–5103

    Article  ADS  Google Scholar 

  26. Schmidt O G, Eberl K. Nanotechnology: Thin solid films roll up into nanotubes. Nature, 2001, 410: 168

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu**a Li or ChangZhi Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, A., Hao, T., Li, W. et al. The concept and realization of nanostructure fabrication using free-standing metallic wires with rapid thermal annealing. Sci. China Phys. Mech. Astron. 58, 1–7 (2015). https://doi.org/10.1007/s11433-014-5623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5623-x

Keyowrds

Navigation