Log in

Advances in numerical algorithms and methods in computational geosciences with modeling characteristics of multiple physical and chemical processes

  • Article
  • Special Topic: Engineering Mechanics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper aims to provide a brief introduction to recent advances in numerical algorithms and methods in the emerging computational geoscience filed with general simulation characteristics of modeling multiple chemical and physical processes that take place in ore-generating systems within the Earth’s crust. Due to significant differences between Earth systems and engineering systems, the existing numerical algorithms and methods, which are designed for simulating realistic problems in the engineering fields, may not be straightforwardly used to simulate ore-generating problems without significant improvements. Thus, extensive and systematic studies have been conducted, in recent years, to develop new numerical algorithms and methods for simulating different aspects of ore-generating problems. Not only can the outcomes of these studies provide new simulation tools for better understanding the controlled dynamic mechanisms that take place in ore-generating systems, but also they have enriched the research contents of computational mechanics in the broad sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hobbs B E, Zhang Y, Ord A. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration. J Geoch Explor, 2000, 69–70: 505–509

    Article  Google Scholar 

  2. Ord A, Hobbs B E, Zhang Y, et al. Geodynamic modeling of the century deposit, Mt Isa Province, Queensland. Aust J Earth Sci, 2002, 49: 1011–1039

    Article  Google Scholar 

  3. Sorjonen-Ward P, Zhang Y, Zhao C. Numerical modeling of orogenic processes and mineralization in the south eastern part of the Yilgarn Craton, Western Australia. Aust J Earth Sci, 2002, 49: 935–964

    Article  Google Scholar 

  4. Gow P, Upton P, Zhao C, et al. Copper-Gold mineralization in the New Guinea: Numerical modeling of collision. Aust J Earth Sci, 2002, 49: 753–771

    Article  Google Scholar 

  5. Prigogine I. From Being to Becoming. New York: W. H. Freeman and Company, 1980. 1–220

    Google Scholar 

  6. Nield D A, Bejan A. Convection in Porous Media. New York: Springer, 1992. 1–399

    Book  Google Scholar 

  7. Bjorlykke K, Mo A, Palm E. Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Petro Geol, 1988, 5: 338–351

    Article  Google Scholar 

  8. Zhao C, Mühlhaus H B, Hobbs B E. Finite element analysis of steady-state natural convection problems in fluid-saturated porous media heated from below. Int J Num Analy Meth Geomech, 1997, 21: 863–881

    Article  Google Scholar 

  9. Zhao C, Hobbs B E, Mühlhaus H B. Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comp Meth Appl Mech Eng, 1998, 165: 175–187

    Article  MATH  Google Scholar 

  10. Zhao C, Hobbs B E, Mühlhaus H B. Effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in deformable fluid-saturated porous media heated from below. Comp Meth Appl Mech Eng, 1999, 173: 41–54

    Article  MATH  Google Scholar 

  11. Chevalier S, Bernard D, Joly N. Natural convection in a porous layer bounded by impervious domains: from numerical approaches to experimental realization. Int J Heat Mass Trans, 1999, 42: 581–597

    Article  MATH  Google Scholar 

  12. Zhao C, Hobbs B E, Mühlhaus H B. Finite element analysis of heat transfer and mineralization in layered hydrothermal systems with upward throughflow. Comp Meth Appl Mech Eng, 2000, 186: 49–64

    Article  MATH  Google Scholar 

  13. Zhao C, Hobbs B E, Mühlhaus H B, et al. Computer simulations of coupled problems in geological and geochemical systems. Comp Meth Appl Mech Eng, 2002, 191: 3137–3152

    Article  MATH  Google Scholar 

  14. Yang J W, Feng Z, Luo X, et al. Three-dimensional numerical modeling of salinity variations in driving basin-scale ore-forming fluid flow: Example from Mount Isa Basin, northern Australia. J Geoch Expl, 2010, 106: 236–243

    Article  Google Scholar 

  15. Chadam J, Hoff D, Merino E, et al. Reactive infiltration instabilities. IMA J Appl Math, 1986, 36: 207–221

    Article  MATH  MathSciNet  Google Scholar 

  16. Ortoleva P, Chadam J, Merino E, et al. Geochemical self-organization II: The reactive-infiltration instability. Am J Sci, 1987, 287: 1008–1040

    Article  Google Scholar 

  17. Ormond A, Ortoleva P. Numerical modeling of reaction-induced cavities in a porous rock. J Geoph Res, 2000, 105: 16737–16747

    Article  Google Scholar 

  18. Zhao C, Hobbs B E, Hornby P, et al. Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Inter J Num Anal Meth Geomech, 2008, 32: 1107–1130

    Article  MATH  Google Scholar 

  19. Zhao C, Hobbs B E, Ord A, et al. Morphological evolution of three-dimensional chemical dissolution front in fluid-saturated porous media: A numerical simulation approach. Geofluids, 2008, 8: 113–127

    Article  Google Scholar 

  20. Chen J S, Liu C W, Lai G X, et al. Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium. J Hydrol, 2009, 373: 96–102

    Article  Google Scholar 

  21. Zhao C, Reid L B, Regenauer-Lieb K, et al. A porosity-gradient replacement approach for computational simulation of chemical- dissolution front propagation in fluid-saturated porous media including pore-fluid compressibility. Comp Geosci, 2012, 16: 735–755

    Article  Google Scholar 

  22. Zhao C, Hobbs B E, Ord A, et al. Particle simulation of spontaneous crack generation problems in large-scale quasi-static systems. Int J Num Meth Eng, 2007, 69: 2302–2329

    Article  MATH  Google Scholar 

  23. Zhao C, Hobbs B E, Ord A, et al. An upscale theory of particle simulation for two-dimensional quasi-static problems. Int J Num Meth Eng, 2007, 72: 397–421

    Article  MATH  Google Scholar 

  24. Zhao C, Hobbs B E, Ord A, et al. Phenomenological modeling of crack generation in brittle crustal rocks using the particle simulation method. J Struct Geol, 2007, 29: 1034–1048

    Article  Google Scholar 

  25. Zhao C, Hobbs B E, Ord A. Convective and Advective Heat Transfer in Geological Systems. Berlin: Springer, 2008. 1–229

    Book  MATH  Google Scholar 

  26. Zhao C, Hobbs B E, Ord A. Fundamentals of Computational Geo- Science: Numerical Methods and Algorithms. Berlin: Springer, 2009. 1–241

    Book  Google Scholar 

  27. Zhao C, Reid L B, Regenauer-Lieb K. Some fundamental issues in computational hydrodynamics of mineralization: A review. J Geoch Expl, 2012, 112: 21–34

    Article  Google Scholar 

  28. Zhao C, Hobbs B E, Walshe J L, et al. Finite element modeling of fluid-rock interaction problems in pore-fluid saturated hydrothermal/ sedimentary basins. Comp Meth Appl Mech Eng, 2001, 190: 2277–2293

    Article  MATH  Google Scholar 

  29. Zhao C, Hobbs B E, Hornby P, et al. Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks. Int J Num Meth Eng, 2006, 66: 1061–1078

    Article  MATH  Google Scholar 

  30. Zhao C, Hobbs B E, Ord A, et al. Mineral precipitation associated with vertical fault zones: The interaction of solute advection, diffusion and chemical kinetics. Geofluids, 2007, 7: 3–18

    Article  Google Scholar 

  31. Zhao C, Hobbs B E, Ord A, et al. An equivalent algorithm for simulating thermal effects of magma intrusion problems in porous rocks. Comp Meth Appl Mech Eng, 2003, 192: 3397–3408

    Article  MATH  Google Scholar 

  32. Zhao C, Hobbs B E, Ord A, et al. Numerical modeling of chemical effects of magma solidification problems in porous rocks. Int J Num Meth Eng, 2005, 64: 709–728

    Article  MATH  Google Scholar 

  33. Zhao C, Hobbs B E, Ord A, et al. Particle simulation of spontaneous crack generation associated with the laccolithic type of magma intrusion processes. Int J Num Meth Eng, 2008, 75: 1172–1193

    Article  MATH  Google Scholar 

  34. Zhao C, Hobbs B, Alt-Ep** P. Modeling of ore-forming and geoenvironmental systems: Roles of fluid flow and chemical reaction processes. J Geoch Expl, 2014, 144: 3–11

    Article  Google Scholar 

  35. Carslaw H, Jaeger J. Conduction of Heat in Solids. Oxford: Clarendon Press, 1959. 1–285

    Google Scholar 

  36. Alexiades V, Solomon A D. Mathematical Modelling of Melting and Freezing Processes. Washington D C: Hemisphere Publishing Co., 1993

    Google Scholar 

  37. Awadh S M, Ali K K, Alazzawi A T. Geochemical exploration using surveys of spring water, hydrocarbon and gas seepage, and geobotany for determining the surface extension of Abu-Jir Fault Zone in Iraq: A new way for determining geometrical shapes of computational simulation models. J Geoch Expl, 2013, 124: 218–229

    Article  Google Scholar 

  38. Charifo G, Almeida J A, Ferreira A. Managing borehole samples of unequal lengths to construct a high-resolution mining model of mineral grades zoned by geological units. J Geoch Expl, 2013, 132: 209–223

    Article  Google Scholar 

  39. Chi G, Xue C. An overview of hydrodynamic studies of mineralization. Geosc Frontiers, 2011, 2: 423–438

    Article  Google Scholar 

  40. Ju M, Dai T, Yang J. Finite element modeling of pore-fluid flow in the Dachang ore district, Guangxi, China: Implications for hydrothermal mineralization. Geosc Frontiers, 2011, 2: 463–474

    Article  Google Scholar 

  41. Khalil A, Hanich I, Bannari A, et al. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. J Geoch Expl, 2013, 125: 117–129

    Article  Google Scholar 

  42. Aghbelagh Y B, Yang J. Effect of graphite zone in the formation of unconformity-related uranium deposits: Insights from reactive mass transport modeling. J Geoch Expl, 2014, 144: 12–27

    Article  Google Scholar 

  43. Carrillo-Chávez A, Salas-Megchún E, Levresse G, et al. Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metals in the surface environment. J Geoch Expl, 2014, 144: 28–36

    Article  Google Scholar 

  44. Chi G, Li Z, Bethune K. Numerical modeling of hydrocarbon generation in the Douglas Formation of the Athabasca basin (Canada) and implications for unconformity-related uranium mineralization. J Geoch Expl, 2014, 144: 37–48

    Article  Google Scholar 

  45. Mugler C, Rabouille C, Bombled B, et al. Impact of spatial heterogeneities on oxygen consumption in sediments: Experimental observations and 2D numerical modeling. J Geoch Expl, 2012, 112: 76–83

    Article  Google Scholar 

  46. Schmidt Mumm A, Brugger J, Schacht U. Fluids in geological processes: The present state and future outlook. J Geoch Expl, 2010, 106: 1–7

    Article  Google Scholar 

  47. Choi B Y, Yun S T, Kim K H, et al. Geochemical modeling of CO2-water-rock interactions for two different hydrochemical types of CO2-rich springs in Kangwon District, Korea. J Geoch Expl, 2014, 144: 49–62

    Article  Google Scholar 

  48. Huang X, Cao G, Liu J, et al. Reactive transport modeling of Thorium in a cloud computing environment. J Geoch Expl, 2014, 144: 63–73

    Article  Google Scholar 

  49. Huang X, Liu K, Zou C, et al. Forward stratigraphic modelling of the shallow-water delta system in the Poyang Lake, Southern China. J Geoch Expl, 2014, 144: 74–83

    Article  Google Scholar 

  50. **ng H L, Makinouchi A. Three-dimensional finite element simulation of large-scale nonlinear contact friction problems in deformable rocks. J Geoph Eng, 2008, 5: 27–36

    Article  Google Scholar 

  51. Yang J, Large R, Bull S, et al. Basin-scale numerical modelling to test the role of buoyancy driven fluid flow and heat transport in the formation of stratiform Zn-Pb-Ag deposits in the northern Mt Isa basin. Economic Geol, 2006, 101: 1275–1292

    Article  Google Scholar 

  52. Liu J, Pereira G G, Regenauer-Lieb K. From characterisation of pore-structures to simulations of pore-scale fluid flow and the upscaling of permeability using microtomography: A case study of heterogeneous carbonates. J Geoch Expl, 2014, 144: 84–96

    Article  Google Scholar 

  53. Liu L, Sun T, Zhou R. Epigenetic genesis and magmatic intrusion’s control on the Dongguashan stratabound Cu-Au deposit, Tongling, China: Evidence from field geology and numerical modeling. J Geoch Expl, 2014, 144: 97–114

    Article  Google Scholar 

  54. Liu Y, Dai T. Numerical modeling of pore-fluid flow and heat transfer in the Fushan iron ore district, Hebei, China: Implications for hydrothermal mineralization. J Geoch Expl, 2014, 144: 115–127

    Article  Google Scholar 

  55. Gessner K, Kühn M, Rath V, et al. Coupled process models as a tool for analysing hydrothermal systems. Surveys Geoph, 2009, 30: 133–162

    Article  Google Scholar 

  56. Kühn M, Dobertb F, Gessner K. Numerical investigation of the effect of heterogeneous permeability distributions on free convection in the hydrothermal system at Mount Isa, Australia. Earth Planet Sci Lett, 2006, 244: 655–671

    Article  Google Scholar 

  57. Sun T, Liu L. Delineating the complexity of Cu-Mo mineralization in a porphyry intrusion by computational and fractal modeling: A case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China. J Geoch Expl, 2014, 144: 128–143

    Article  Google Scholar 

  58. Tripathy G R, Das A. Modeling geochemical datasets for source apportionment: Comparison of least square regression and inversion approaches. J Geoch Expl, 2014, 144: 144–153

    Article  Google Scholar 

  59. Wang J G, Peng Y. Numerical modeling for the combined effects of two-phase flow, deformation, gas diffusion and CO2 sorption on caprock sealing efficiency. J Geoch Expl, 2014, 144: 154–167

    Article  Google Scholar 

  60. **ng H. Finite element simulation of transient geothermal flow in extremely heterogeneous fractured porous media. J Geoch Expl, 2014, 144: 168–178

    Article  Google Scholar 

  61. Xu T, Feng G, Shi Y. On fluid-rock chemical interaction in CO2-based geothermal systems. J Geoch Expl, 2014, 144: 179–193

    Article  Google Scholar 

  62. Fu F Q, McInnes B I A, Evans N J, et al. Numerical modeling of magmatic–hydrothermal systems constrained by U-Th-Pb-He time-temperature histories. J Geoch Expl, 2010, 106: 90–109

    Article  Google Scholar 

  63. Tian Z, **ng H, Tan Y, et al. A coupled lattice Boltzmann model for simulating reactive transport in CO2 injection. Physica A, 2014, 403: 155–164

    Article  MathSciNet  Google Scholar 

  64. Lai K H, Chen J S, Liu C W, et al. Effect of permeability-porosity functions on simulated morphological evolution of a chemical dissolution front in a fluid-saturated porous medium. Hydrol Proc, 2014, 28: 16–24

    Article  Google Scholar 

  65. Zhang X, Jeffrey R G. Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. J Geoch Expl, 2014, 144: 194–207

    Article  Google Scholar 

  66. Zhao L, Wang X, Zhang Q, et al. Study on the transformation mechanism of nitrate in a loose-pore geothermal reservoir: Experimental results and numerical simulations. J Geoch Expl, 2014, 144: 208–216

    Article  Google Scholar 

  67. Zhao C, Hobbs B E, Baxter K, et al. A numerical study of pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. Eng Comput, 1999, 16: 202–214

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChongBin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C. Advances in numerical algorithms and methods in computational geosciences with modeling characteristics of multiple physical and chemical processes. Sci. China Technol. Sci. 58, 783–795 (2015). https://doi.org/10.1007/s11431-015-5784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5784-5

Keywords

Navigation