Log in

Magnetic nanoparticles based cancer therapy: current status and applications

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Nanotechnology holds a promising potential for develo** biomedical nanoplatforms in cancer therapy. The magnetic nanoparticles, which integrate uniquely appealing features of magnetic manipulation, nanoscale heat generator, localized magnetic field and enzyme-mimics, prompt the development and application of magnetic nanoparticles-based cancer medicine. Considerable success has been achieved in improving the magnetic resonance imaging (MRI) sensitivity, and the therapeutic function of the magnetic nanoparticles should be given adequate attention. This work reviews the current status and applications of magnetic nanoparticles based cancer therapy. The advantages of magnetic nanoparticles that may contribute to improved therapeutics efficacy of clinic cancer treatment are highlighted here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, M., and Goldberg, S.N. (2011). Basic science research in thermal ablation. Surg Oncol Clin North Am 20, 237–258.

    Article  Google Scholar 

  • Alivisatos, A.P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100, 13226–13239.

    Article  CAS  Google Scholar 

  • Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R., and Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32.

    Article  Google Scholar 

  • Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., Giri, K., Bhattacharya, R., and Mukherjee, P. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41, 2943–2970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballatori, N., Krance, S.M., Notenboom, S., Shi, S., Tieu, K., and Hammond, C.L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390, 191–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K. (2000). Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, E., Shen, H., and Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33, 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Zhang, W., Zhu, G., **e, J., and Chen, X. (2017). Rethinking cancer nanotheranostics. Nat Rev Mater 2, 17024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Xu, L., Liang, C., Wang, C., Peng, R., and Liu, Z. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7, 13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R., Romero, G., Christiansen, M.G., Mohr, A., and Anikeeva, P. (2015). Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, K., Peng, S., Xu, C., and Sun, S. (2009). Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 131, 10637–10644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Z., Al Zaki, A., Hui, J.Z., Muzykantov, V.R., and Tsourkas, A. (2012). Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, K., Wang, X., Nie, S., Chen, Z.G., and Shin, D.M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Res 14, 1310–1316.

    Article  CAS  Google Scholar 

  • Cho, N.H., Cheong, T.C., Min, J.H., Wu, J.H., Lee, S.J., Kim, D., Yang, J. S., Kim, S., Kim, Y.K., and Seong, S.Y. (2011). A multifunctional coreshell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotech 6, 675–682.

    Article  CAS  Google Scholar 

  • Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q., and Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 4078–4088.

    Article  CAS  PubMed  Google Scholar 

  • Chung, T.H., Hsiao, J.K., Hsu, S.C., Yao, M., Chen, Y.C., Wang, S.W., Kuo, M.Y.P., Yang, C.S., and Huang, D.M. (2011). Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy. ACS Nano 5, 9807–9816.

    Article  CAS  PubMed  Google Scholar 

  • DeNardo, S.J., DeNardo, G.L., Miers, L.A., Natarajan, A., Foreman, A.R., Gruettner, C., Adamson, G.N., and Ivkov, R. (2005). Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 11, 7087s–7092s.

  • Dobson, J. (2006). Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa, A., Di Corato, R., Kolosnjaj-Tabi, J., Flaud, P., Pellegrino, T., and Wilhelm, C. (2016). Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10, 2436–2446.

    Article  CAS  PubMed  Google Scholar 

  • Fan, W., Yung, B., Huang, P., and Chen, X. (2017). Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117, 13566–13638.

    Article  CAS  PubMed  Google Scholar 

  • Fortin, J.P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J.C., and Gazeau, F. (2007). Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129, 2628–2635.

    Article  CAS  PubMed  Google Scholar 

  • Gautam, B., Parsai, E.I., Shvydka, D., Feldmeier, J., and Subramanian, M. (2012). Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors. Med Phys 39, 1980–1990.

    Article  PubMed  Google Scholar 

  • Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., and Taylor, C.B. (1957). Selective inductive heating of lymph nodes. Ann Surgery 146, 596–606.

    Article  CAS  Google Scholar 

  • Giri, S., Trewyn, B.G., Stellmaker, M.P., and Lin, V.S.Y. (2005). Stimuliresponsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed 44, 5038–5044.

    Article  CAS  Google Scholar 

  • Gordon, R.T., Hines, J.R., and Gordon, D. (1979). Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5, 83–102.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., Wu, Z., Li, W., Wang, Z., Li, Q., Kong, F., Zhang, H., Zhu, X., Du, Y.P., **, Y., et al. (2016). Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl Mater Interfaces 8, 3092–3106.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Harmon, B.V., Takano, Y.S., Winterford, C.M., and Gobé, G.C. (1991). The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol 59, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Hauff, K.M., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., and Jordan, A. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103, 317–324.

    Article  Google Scholar 

  • Hayashi, K., Sakamoto, W., and Yogo, T. (2016). Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv Funct Mater 26, 1708–1718.

    Article  CAS  Google Scholar 

  • Hergt, R., and Dutz, S. (2007). Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311, 187–192.

    Article  CAS  Google Scholar 

  • Hervault, A., and Thanh, N.T.K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6, 11553–11573.

    Article  CAS  PubMed  Google Scholar 

  • Ho, D., Sun, X., and Sun, S. (2011). Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44, 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsman, M.R., and Overgaard, J. (2007). Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 19, 418–426.

    Article  CAS  Google Scholar 

  • Hu, F., Wei, L., Zhou, Z., Ran, Y., Li, Z., and Gao, M. (2006). Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18, 2553–2556.

    Article  CAS  Google Scholar 

  • Hu, S.H., Chen, S.Y., Liu, D.M., and Hsiao, C.S. (2008). Core/singlecrystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv Mater 20, 2690–2695.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S.H., Liu, T.Y., Huang, H.Y., Liu, D.M., and Chen, S.Y. (2008). Magnetic-sensitive silica nanospheres for controlled drug release. Langmuir 24, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., and Pralle, A. (2010). Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotech 5, 602–606.

    Article  CAS  Google Scholar 

  • Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128, 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  • Huh, Y.M., Jun, Y., Song, H.T., Kim, S., Choi, J., Lee, J.H., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., et al. (2005). In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127, 12387–12391.

    Article  CAS  PubMed  Google Scholar 

  • Ito, A., Tanaka, K., Kondo, K., Shinkai, M., Honda, H., Matsumoto, K., Saida, T., and Kobayashi, T. (2003). Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Jang, J., Nah, H., Lee, J.H., Moon, S.H., Kim, M.G., and Cheon, J. (2009). Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121, 1260–1264.

    Article  Google Scholar 

  • Johannsen, M., Gneveckow, U., Eckelt, L., Feussner, A., WaldÖFner, N., Scholz, R., Deger, S., Wust, P., Loening, S.A., and Jordan, A. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int J Hyperthermia 21, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Johannsen, M., Gneveckow, U., Taymoorian, K., Thiesen, B., Waldöfner, N., Scholz, R., Jung, K., Jordan, A., Wust, P., and Loening, S.A. (2007). Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperthermia 23, 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Johannsen, M., Gneveckow, U., Thiesen, B., Taymoorian, K., Cho, C.H., Waldöfner, N., Scholz, R., Jordan, A., Loening, S.A., and Wust, P. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urology 52, 1653–1662.

    Article  Google Scholar 

  • Johannsen, M., Thiesen, B., Wust, P., and Jordan, A. (2010). Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26, 790–795.

    Article  PubMed  Google Scholar 

  • Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., et al. (2005). Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127, 5732–5733.

    Article  CAS  PubMed  Google Scholar 

  • Jun, Y.W., Seo, J.W., and Cheon, J. (2008). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41, 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.S., Han, J., Lee, J.H., Lee, J.H., Choi, J.M., Kweon, H.S., Han, J. H., Kim, J.H., Byun, K.M., Jung, J.H., et al. (2015). Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J Am Chem Soc 137, 3017–3023.

    Article  CAS  PubMed  Google Scholar 

  • Kam**a, H.H., and Dikomey, E. (2001). Hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 77, 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Kam**a, H.H., Dynlacht, J.R., and Dikomey, E. (2004). Mechanism of radiosensitization by hyperthermia (43°C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia 20, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., Ellenbogen, R.G., Olson, J.M., and Zhang, M. (2009). PEI-PEG-chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19, 2244–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kievit, F.M., Veiseh, O., Fang, C., Bhattarai, N., Lee, D., Ellenbogen, R.G., and Zhang, M. (2010). Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4, 4587–4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., Shin, K., Lee, Y., Kwon, S.G., Na, H.B., et al. (2011). Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolutionT1 magnetic resonance imaging contrast agents. J Am Chem Soc 133, 12624–12631.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Cho, H.R., Jeon, H., Kim, D., Song, C., Lee, N., Choi, S.H., and Hyeon, T. (2017). Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc 139, 10992–10995.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Kim, S., and Nam, J.M. (2016). Plasmonically engineered nanoprobes for biomedical applications. J Am Chem Soc 138, 14509–14525.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166, 8–23.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.H., Jang, J.T., Choi, J.S., Moon, S.H., Noh, S.H., Kim, J.W., Kim, J. G., Kim, I.S., Park, K.I., and Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech 6, 418–422.

    Article  CAS  Google Scholar 

  • Lee, J.H., Lee, K., Moon, S.H., Lee, Y., Park, T.G., and Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48, 4174–4179.

    Article  CAS  Google Scholar 

  • Lee, J.H., Huh, Y.M., Jun, Y., Seo, J., Jang, J., Song, H.T., Kim, S., Cho, E. J., Yoon, H.G., Suh, J.S., et al. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Lee, N., Yoo, D., Ling, D., Cho, M.H., Hyeon, T., and Cheon, J. (2015). Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115, 10637–10689.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Wei, L., Gao, M.Y., and Lei, H. (2005). One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17, 1001–1005.

    Article  CAS  Google Scholar 

  • Liao, M.Y., Lai, P.S., Yu, H.P., Lin, H.P., and Huang, C.C. (2012). Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chem Commun 48, 5319–5321.

    Article  CAS  Google Scholar 

  • Lim, E.K., Kim, T., Paik, S., Haam, S., Huh, Y.M., and Lee, K. (2014). Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115, 327–394.

    Article  PubMed  CAS  Google Scholar 

  • Link, S., and El-Sayed, M.A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103, 8410–8426.

    Article  CAS  Google Scholar 

  • Liu, T.Y., Hu, S.H., Liu, K.H., Shaiu, R.S., Liu, D.M., and Chen, S.Y. (2008). Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir 24, 13306–13311.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.L., Fan, H.M., Yi, J.B., Yang, Y., Choo, E.S.G., Xue, J.M., Fan, D. D., and Ding, J. (2012). Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22, 8235–8244.

    Article  CAS  Google Scholar 

  • Liu, X.L., Ng, C.T., Chandrasekharan, P., Yang, H.T., Zhao, L.Y., Peng, E., Lv, Y.B., **ao, W., Fang, J., Yi, J.B., et al. (2016). Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 dual-mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthcare Mater 5, 2092–2104.

    Article  CAS  Google Scholar 

  • Liu, X.L., Yang, Y., Ng, C.T., Zhao, L.Y., Zhang, Y., Bay, B.H., Fan, H.M., and Ding, J. (2015). Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater 27, 1939–1944.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., and Dai, H. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotech 2, 47–52.

    Article  CAS  Google Scholar 

  • Lu, Y., Xu, Y.J., Zhang, G., Ling, D., Wang, M., Zhou, Y., Wu, Y.D., Wu, T., Hackett, M.J., Hyo Kim, B., et al. (2017). Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nat Biomed Eng 1, 637–643.

    Article  PubMed  Google Scholar 

  • Lübbe, A.S., Bergemann, C., Huhnt, W., Fricke, T., Riess, H., Brock, J.W., and Huhn, D. (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56, 4694–4701.

    PubMed  Google Scholar 

  • Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow, U., Wust, P., Thiesen, B., Feussner, A., von Deimling, A., Waldoefner, N., Felix, R., et al. (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • McGill, S.L., Cuylear, C.L., Adolphi, N.L., Osiński, M., and Smyth, H.D. C. (2009). Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. IEEE Transon Nano-Biosci 8, 33–42.

    Article  Google Scholar 

  • Meng, F., Hennink, W.E., and Zhong, Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30, 2180–2198.

    Article  CAS  PubMed  Google Scholar 

  • Mienkina, M.P., Friedrich, C.S., Hensel, K., Gerhardt, N.C., Hofmann, M. R., and Schmitz, G. (2009). Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent/Evaluation von Ferucarbotran (Resovist ®) als photoakustisches Kontrastmittel. Biomedizinische Technik/ BioMed Eng 54, 83–88.

    Article  CAS  Google Scholar 

  • Mikhaylov, G., Mikac, U., Magaeva, A.A., Itin, V.I., Naiden, E.P., Psakhye, I., Babes, L., Reinheckel, T., Peters, C., Zeiser, R., et al. (2011). Ferriliposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotech 6, 594–602.

    Article  CAS  Google Scholar 

  • Mura, S., Nicolas, J., and Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Muthana, M., Kennerley, A.J., Hughes, R., Fagnano, E., Richardson, J., Paul, M., Murdoch, C., Wright, F., Payne, C., Lythgoe, M.F., Farrow, N., Dobson, J., Conner, J., Wild, J.M., and Lewis, C. (2015). Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 6, 8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na, H.B., and Hyeon, T. (2009). Nanostructured T1 MRI contrast agents. J Mater Chem 19, 6267–6273.

    Article  CAS  Google Scholar 

  • Namiki, Y., Namiki, T., Yoshida, H., Ishii, Y., Tsubota, A., Koido, S., Nariai, K., Mitsunaga, M., Yanagisawa, S., Kashiwagi, H., et al. (2009). A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotech 4, 598–606.

    Article  CAS  Google Scholar 

  • Ni, D., Bu, W., Ehlerding, E.B., Cai, W., and Shi, J. (2017). Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46, 7438–7468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh, S.H., Na, W., Jang, J.T., Lee, J.H., Lee, E.J., Moon, S.H., Lim, Y., Shin, J.S., and Cheon, J. (2012). Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12, 3716–3721.

    Article  CAS  PubMed  Google Scholar 

  • O′Neal, D.P., Hirsch, L.R., Halas, N.J., Payne, J.D., and West, J.L. (2004). Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209, 171–76.

    Article  PubMed  CAS  Google Scholar 

  • Palucka, K., and Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12, 265–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys 36, R167–R181.

    Article  CAS  Google Scholar 

  • Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., and Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2, 751–760.

    Article  CAS  Google Scholar 

  • Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Döblinger, M., Banerjee, R., Bahadur, D., and Plank, C. (2011). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 142, 108–121.

    Article  CAS  Google Scholar 

  • Rand, R.W., Snow, H.D., and Brown, W.J. (1982). Thermomagnetic surgery for cancer. J Surg Res 33, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe, A.B., Khot, V.M., and Pawar, S.H. (2014). Magnetic hyperthermia with magnetic nanoparticles: a status review. CTMC 14, 572–594.

    Article  CAS  Google Scholar 

  • Sanson, C., Diou, O., Thévenot, J., Ibarboure, E., Soum, A., Brûlet, A., Miraux, S., Thiaudière, E., Tan, S., Brisson, A., et al. (2011). Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5, 1122–1140.

    Article  CAS  PubMed  Google Scholar 

  • Santra, S., Kaittanis, C., Grimm, J., and Perez, J.M. (2009). Drug/dyeloaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5, 1862–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, S., Kong, F., Guo, X., Wu, L., Shen, H., **e, M., Wang, X., **, Y., and Ge, Y. (2013). CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale 5, 8056–8066.

    Article  CAS  PubMed  Google Scholar 

  • Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., and Yang, W. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Z., Chen, T., Ma, X., Ren, W., Zhou, Z., Zhu, G., Zhang, A., Liu, Y., Song, J., Li, Z., et al. (2017). Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles forT1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11, 10992–11004.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Kantoff, P.W., Wooster, R., and Farokhzad, O.C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17, 20–37.

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Gong, H., Yin, S., Cheng, L., Wang, C., Li, Z., Li, Y., Wang, X., Liu, G., and Liu, Z. (2014). Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater 24, 1194–1201.

    Article  CAS  Google Scholar 

  • Soukup, D., Moise, S., Céspedes, E., Dobson, J., and Telling, N.D. (2015). In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 9, 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, S.A., Gagner, J.E., Damanpour, S., Yoshida, M., Dordick, J.S., and Friedman, J.M. (2012). Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, W., Ji, X., Xu, X., Islam, M.A., Li, Z., Chen, S., Saw, P.E., Zhang, H., Bharwani, Z., Guo, Z., et al. (2017). Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew Chem Int Ed 56, 11896–11900.

    Article  CAS  Google Scholar 

  • Tarangelo, A., and Dixon, S.J. (2016). An iron age for cancer therapy. Nat Nanotech 11, 921–922.

    Article  CAS  Google Scholar 

  • van der Zee, J. (2002). Heating the patient: a promising approach? Ann Oncol 13, 1173–1184.

    Article  PubMed  Google Scholar 

  • van Landeghem, F.K.H., Maier-Hauff, K., Jordan, A., Hoffmann, K.T., Gneveckow, U., Scholz, R., Thiesen, B., Brück, W., and von Deimling, A. (2009). Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30, 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Chen, C., Zeng, K., Pan, W., and Song, T. (2014). Magnetic nanoparticles trigger cell proliferation arrest of neuro-2a cells and ROSmediated endoplasmic reticulum stress response. J Nanopart Res 16, 2718.

    Article  CAS  Google Scholar 

  • Wu, L., Mendoza-Garcia, A., Li, Q., and Sun, S. (2016). Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116, 10473–10512.

    Article  CAS  PubMed  Google Scholar 

  • Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., and Schlag, P. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol 3, 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Yanase, M., Shinkai, M., Honda, H., Wakabayashi, T., Yoshida, J., and Kobayashi, T. (1998). Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Cancer Sci 89, 775–782.

    CAS  Google Scholar 

  • Yang, K., Zhang, S., Zhang, G., Sun, X., Lee, S.T., and Liu, Z. (2010). Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10, 3318–3323.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, D., Jeong, H., Noh, S.H., Lee, J.H., and Cheon, J. (2013). Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew Chem Int Ed 52, 13047–13051.

    Article  CAS  Google Scholar 

  • Yoo, D., Lee, J.H., Shin, T.H., and Cheon, J. (2011). Theranostic magnetic nanoparticles. Acc Chem Res 44, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M.K., Jeong, Y.Y., Park, J., Park, S., Kim, J.W., Min, J.J., Kim, K., and Jon, S. (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem 120, 5442–5445.

    Article  Google Scholar 

  • Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J.S., Nejadnik, H., Goodman, S., Moseley, M., et al. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotech 11, 986–994.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, L., Liu, X.L., Jiao, J., Ng, C.T., Yi, J.B., Luo, Y.E., Bay, B. H., Zhao, L.Y., Peng, M.L., et al. (2017). Ultrasmall ferrite nanoparticles synthesizedvia dynamic simultaneous thermal decomposition for high-performance and multifunctionalT1 magnetic resonance imaging contrast agent. ACS Nano 11, 3614–3631.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the National Natural Science Foundation of China (81571809, 81771981, 31400663, and 21376192) and the Natural Science Foundation of Shaanxi Province (2015JM2063 and 2017JM2031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Ming Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, X.L., Zhang, Y.F. et al. Magnetic nanoparticles based cancer therapy: current status and applications. Sci. China Life Sci. 61, 400–414 (2018). https://doi.org/10.1007/s11427-017-9271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9271-1

Keywords

Navigation