Log in

Efficient wide-bandgap perovskite solar cells with open-circuit voltage deficit below 0.4 V via hole-selective interface engineering

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Wide-bandgap mixed-halide perovskite solar cells (WBG-PSCs) are promising top cells for efficient tandem photovoltaics to achieve high power conversion efficiency (PCE) at low cost. However, the open-circuit voltage (VOC) of WBG-PSCs is still unsatisfactory as the VOC-deficit is generally larger than 0.45 V. Herein, we report a buried interface engineering strategy that substantially improves the VOC of WBG-PSCs by inserting amphophilic molecular hole-selective materials featuring with a cyanovinyl phosphonic acid (CPA) anchoring group between the perovskite and substrate. The assembly and redistribution of CPA-based amphiphilic molecules at the perovskite-substrate buried interface not only promotes the growth of a low-defect crystalline perovskite thin film, but also suppresses the photo-induced halide phase separation. The energy level alignment between wide-bandgap perovskite and the hole-selective layer is further improved by modulating the substituents on the triphenylamine donor moiety (methoxyls for MPA-CPA, methyls for MePA-CPA, and bare TPA-CPA). Using a 1.68 eV bandgap perovskite, the MePA-CPA-based devices achieved an unprecedentedly high VOC of 1.29 V and PCE of 22.3% under standard AM 1.5 sunlight. The VOC-deficit (<0.40 V) is the lowest value reported for WBG-PSCs. This work not only provides an effective approach to decreasing the VOC-deficit of WBG-PSCs, but also confirms the importance of energy level alignment at the charge-selective layers in PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J, Kim J, Yun HS, Paik MJ, Noh E, Mun HJ, Kim MG, Shin TJ, Seok SI. Nature, 2023, 616: 724–730

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng HX, Chu X, Peng X, Yuan Y, Zhang X, You J. Science, 2022, 377: 531–534

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Maxwell A, Li C, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J, Wang Z, Zeng L, Park SM, Chen L, Serles P, Awni RA, Subedi B, Zheng X, **ao C, Podraza NJ, Filleter T, Liu C, Yang Y, Luther JM, De Wolf S, Kanatzidis MG, Yan Y, Sargent EH. Nature, 2023, 613: 676–681

    Article  CAS  PubMed  Google Scholar 

  4. He R, Wang W, Yi Z, Lang F, Chen C, Luo J, Zhu J, Thiesbrummel J, Shah S, Wei K, Luo Y, Wang C, Lai H, Huang H, Zhou J, Zou B, Yin X, Ren S, Hao X, Wu L, Zhang J, Zhang J, Stolterfoht M, Fu F, Tang W, Zhao D. Nature, 2023, 618: 80–86

    Article  CAS  PubMed  Google Scholar 

  5. Mariotti S, Köhnen E, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine I, Mantione D, Al-Ashouri A, Härtel MS, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S. Science, 2023, 381: 63–69

    Article  CAS  PubMed  Google Scholar 

  6. Chen B, Chen H, Hou Y, Xu J, Teale S, Bertens K, Chen H, Proppe A, Zhou Q, Yu D, Xu K, Vafaie M, Liu Y, Dong Y, Jung EH, Zheng C, Zhu T, Ning Z, Sargent EH. Adv Mater, 2021, 33: 2103394

    Article  CAS  Google Scholar 

  7. Guo H, Fang Y, Lei Y, Wu J, Li M, Li X, Cheng HB, Lin Y, Dyson PJ. Small, 2023, 19: 2302021

    Article  CAS  Google Scholar 

  8. Isikgor FH, Furlan F, Liu J, Ugur E, Eswaran MK, Subbiah AS, Yengel E, De Bastiani M, Harrison GT, Zhumagali S, Howells CT, Aydin E, Wang M, Gasparini N, Allen TG, Rehman A, Van Kerschaver E, Baran D, McCulloch I, Anthopoulos TD, Schwingenschlögl U, Laquai F, De Wolf S. Joule, 2021, 5: 1566–1586

    Article  CAS  Google Scholar 

  9. Su C, Wang R, Tao J, Shen J, Wang D, Wang L, Fu G, Yang S, Yuan M, He T. J Mater Chem A, 2023, 11: 6565–6573

    Article  CAS  Google Scholar 

  10. Wang R, Li M, Ma Z, He Z, Dong Y, Zhang Y, Xu Z, Su G, Tan Z. Chem Commun, 2023, 59: 6255–6258

    Article  CAS  Google Scholar 

  11. Hang P, Kan C, Li B, Yao Y, Hu Z, Zhang Y, **e J, Wang Y, Yang D, Yu X. Adv Funct Mater, 2023, 33: 2214381

    Article  CAS  Google Scholar 

  12. Zhao Y, Wang C, Ma T, Zhou L, Wu Z, Wang H, Chen C, Yu Z, Sun W, Wang A, Huang H, Zou B, Zhao D, Li X. Energy Environ Sci, 2023, 16: 2080–2089

    Article  CAS  Google Scholar 

  13. Li T, Xu J, Lin R, Teale S, Li H, Liu Z, Duan C, Zhao Q, **ao K, Wu P, Chen B, Jiang S, **ong S, Luo H, Wan S, Li L, Bao Q, Tian Y, Gao X, **e J, Sargent EH, Tan H. Nat Energy, 2023, 8: 610–620

    Article  CAS  Google Scholar 

  14. Guan H, Zhang W, Liang J, Wang C, Hu X, Pu D, Huang L, Ge Y, Cui H, Zou Y, Fang G, Ke W. Adv Funct Mater, 2023, 33: 2300860

    Article  CAS  Google Scholar 

  15. Zhang X, Li X, Tao L, Zhang Z, Ling H, Fu X, Wang S, Ko MJ, Luo J, Chen J, Li Y. Small, 2023, 19: 2208289

    Article  CAS  Google Scholar 

  16. **ang W, Liu SF, Tress W. Angew Chem Int Ed, 2021, 60: 26440–26453

    Article  CAS  Google Scholar 

  17. Mahesh S, Ball JM, Oliver RDJ, McMeekin DP, Nayak PK, Johnston MB, Snaith HJ. Energy Environ Sci, 2020, 13: 258–267

    Article  CAS  Google Scholar 

  18. Wang X, Chen Y, Zhang T, Wang X, Wang Y, Kan M, Miao Y, Chen H, Liu X, Wang X, Shi J, Zhang L, Zhao Y. ACS Energy Lett, 2021, 6: 2735–2741

    Article  CAS  Google Scholar 

  19. Xu J, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ, Larson BW, France RM, Werner J, Harvey SP, Wolf EJ, Weigand W, Manzoor S, van Hest MFAM, Berry JJ, Luther JM, Holman ZC, McGehee MD. Science, 2020, 367: 1097–1104

    Article  CAS  PubMed  Google Scholar 

  20. Jiang Q, Tong J, Scheidt RA, Wang X, Louks AE, **an Y, Tirawat R, Palmstrom AF, Hautzinger MP, Harvey SP, Johnston S, Schelhas LT, Larson BW, Warren EL, Beard MC, Berry JJ, Yan Y, Zhu K. Science, 2022, 378: 1295–1300

    Article  CAS  PubMed  Google Scholar 

  21. Yang G, Ni Z, Yu ZJ, Larson BW, Yu Z, Chen B, Alasfour A, **ao X, Luther JM, Holman ZC, Huang J. Nat Photon, 2022, 16: 588–594

    Article  CAS  Google Scholar 

  22. Yang G, Ren Z, Liu K, Qin M, Deng W, Zhang H, Wang H, Liang J, Ye F, Liang Q, Yin H, Chen Y, Zhuang Y, Li S, Gao B, Wang J, Shi T, Wang X, Lu X, Wu H, Hou J, Lei D, So SK, Yang Y, Fang G, Li G. Nat Photon, 2021, 15: 681–689

    Article  CAS  Google Scholar 

  23. Yan N, Gao Y, Yang J, Fang Z, Feng J, Wu X, Chen T, Liu SF. Angew Chem Int Ed, 2023, 62: e202216668

    Article  CAS  Google Scholar 

  24. Liu J, De Bastiani M, Aydin E, Harrison GT, Gao Y, Pradhan RR, Eswaran MK, Mandal M, Yan W, Seitkhan A, Babics M, Subbiah AS, Ugur E, Xu F, Xu L, Wang M, Rehman A, Razzaq A, Kang J, Azmi R, Said AA, Isikgor FH, Allen TG, Andrienko D, Schwingenschlögl U, Laquai F, De Wolf S. Science, 2022, 377: 302–306

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J. Adv Mater, 2017, 29: 1700607

    Article  Google Scholar 

  26. Al-Ashouri A, Magomedov A, Roß M, Jost M, Talaikis M, Chistiakova G, Bertram T, Márquez JA, Köhnen E, Kasparavičius E, Levcenco S, Gil-Escrig L, Hages CJ, Schlatmann R, Rech B, Malinauskas T, Unold T, Kaufmann CA, Korte L, Niaura G, Getautis V, Albrecht S. Energy Environ Sci, 2019, 12: 3356–3369

    Article  CAS  Google Scholar 

  27. Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez JA, Morales Vilches AB, Kasparavicius E, Smith JA, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jost M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S. Science, 2020, 370: 1300–1309

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Ye F, Wang X, Chen R, Zhang H, Zhan L, Jiang X, Li Y, Ji X, Liu S, Yu M, Yu F, Zhang Y, Wu R, Liu Z, Ning Z, Neher D, Han L, Lin Y, Tian H, Chen W, Stolterfoht M, Zhang L, Zhu WH, Wu Y. Science, 2023, 380: 404–409

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J. Science, 2021, 373: 902–907

    Article  CAS  PubMed  Google Scholar 

  30. Luo X, Luo H, Li H, **a R, Zheng X, Huang Z, Liu Z, Gao H, Zhang X, Li S, Feng Z, Chen Y, Tan H. Adv Mater, 2023, 35: 2207883

    Article  CAS  Google Scholar 

  31. Xu K, Al-Ashouri A, Peng ZW, Köhnen E, Hempel H, Akhundova F, Marquez JA, Tockhorn P, Shargaieva O, Ruske F, Zhang J, Dagar J, Stannowski B, Unold T, Abou-Ras D, Unger E, Korte L, Albrecht S. ACS Energy Lett, 2022, 7: 3600–3611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen J, Wang D, Chen S, Hu H, Li Y, Huang Y, Zhang Z, Jiang Z, Xu J, Sun X, So SK, Peng Y, Wang X, Zhu X, Xu B. ACS Appl Mater Interfaces, 2022, 14: 43246–43256

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Wu X, Liang J, Zhang Z, Jiang J, Wang J, Huang Y, Tian C, Wang L, Chen Z, Chen CC. Adv Funct Mater, 2022, 32: 2200431

    Article  CAS  Google Scholar 

  34. Fang Z, Jia L, Yan N, Jiang X, Ren X, Yang S, Liu SF. InfoMat, 2022, 4: e12307

    Article  CAS  Google Scholar 

  35. Liu J, Aydin E, Yin J, De Bastiani M, Isikgor FH, Rehman AU, Yengel E, Ugur E, Harrison GT, Wang M, Gao Y, Khan JI, Babics M, Allen TG, Subbiah AS, Zhu K, Zheng X, Yan W, Xu F, Salvador MF, Bakr OM, Anthopoulos TD, Lanza M, Mohammed OF, Laquai F, De Wolf S. Joule, 2021, 5: 3169–3186

    Article  CAS  Google Scholar 

  36. Kim D, Jung HJ, Park IJ, Larson BW, Dunfield SP, **ao C, Kim J, Tong J, Boonmongkolras P, Ji SG, Zhang F, Pae SR, Kim M, Kang SB, Dravid V, Berry JJ, Kim JY, Zhu K, Kim DH, Shin B. Science, 2020, 368: 155–160

    Article  CAS  PubMed  Google Scholar 

  37. Ye JY, Tong J, Hu J, **ao C, Lu H, Dunfield SP, Kim DH, Chen X, Larson BW, Hao J, Wang K, Zhao Q, Chen Z, Hu H, You W, Berry JJ, Zhang F, Zhu K. Sol RRL, 2020, 4: 2000082

    Article  CAS  Google Scholar 

  38. Lin C-, Lee J, Kim J, Macdonald TJ, Ngiam J, Xu B, Daboczi M, Xu W, Pont S, Park B, Kang H, Kim J-, Payne DJ, Lee K, Durrant JR, McLachlan MA. Adv Funct Mater, 2020, 30: 1906763

    Article  CAS  Google Scholar 

  39. Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K. Joule, 2019, 3: 1734–1745

    Article  CAS  Google Scholar 

  40. Yang W, Long H, Sha X, Sun J, Zhao Y, Guo C, Peng X, Shou C, Yang X, Sheng J, Yang Z, Yan B, Ye J. Adv Funct Mater, 2022, 32: 2110698

    Article  CAS  Google Scholar 

  41. Wang D, Guo H, Wu X, Deng X, Li F, Li Z, Lin F, Zhu Z, Zhang Y, Xu B, Jen AKY. Adv Funct Mater, 2022, 32: 2107359

    Article  CAS  Google Scholar 

  42. Lin YH, Sakai N, Da P, Wu J, Sansom HC, Ramadan AJ, Mahesh S, Liu J, Oliver RDJ, Lim J, Aspitarte L, Sharma K, Madhu PK, Morales-Vilches AB, Nayak PK, Bai S, Gao F, Grovenor CRM, Johnston MB, Labram JG, Durrant JR, Ball JM, Wenger B, Stannowski B, Snaith HJ. Science, 2020, 369: 96–102

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Zhu C, Luo H, Kong W, Luo X, Wu J, Ding C, Chen Y, Wang Y, Wen J, Gao Y, Tan H. Adv Energy Mater, 2023, 13: 2203230

    Article  CAS  Google Scholar 

  44. Zhu Z, Mao K, Zhang K, Peng W, Zhang J, Meng H, Cheng S, Li T, Lin H, Chen Q, Wu X, Xu J. Joule, 2022, 6: 2849–2868

    Article  CAS  Google Scholar 

  45. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089

    Article  CAS  Google Scholar 

  46. Caprioglio P, Smith JA, Oliver RDJ, Dasgupta A, Choudhary S, Farrar MD, Ramadan AJ, Lin YH, Christoforo MG, Ball JM, Diekmann J, Thiesbrummel J, Zaininger KA, Shen X, Johnston MB, Neher D, Stolterfoht M, Snaith HJ. Nat Commun, 2023, 14: 932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roß M, Severin S, Stutz MB, Wagner P, Köbler H, Favin-Lévêque M, Al-Ashouri A, Korb P, Tockhorn P, Abate A, Stannowski B, Rech B, Albrecht S. Adv Energy Mater, 2021, 11: 2101460

    Article  Google Scholar 

  48. Lim VJY, Knight AJ, Oliver RDJ, Snaith HJ, Johnston MB, Herz LM. Adv Funct Mater, 2022, 32: 2204825

    Article  CAS  Google Scholar 

  49. Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ, Brabec C, Brunetti F, Bulović V, Burlingame Q, Di Carlo A, Cheacharoen R, Cheng YB, Colsmann A, Cros S, Domanski K, Dusza M, Fell CJ, Forrest SR, Galagan Y, Di Girolamo D, Grätzel M, Hagfeldt A, von Hauff E, Hoppe H, Kettle J, Köbler H, Leite MS, Liu S, Loo YL, Luther JM, Ma CQ, Madsen M, Manceau M, Matheron M, McGehee M, Meitzner R, Nazeeruddin MK, Nogueira AF, Odabaşı Ç, Osherov A, Park NG, Reese MO, De Rossi F, Saliba M, Schubert US, Snaith HJ, Stranks SD, Tress W, Troshin PA, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, **e H, Yıldırım R, Zakeeruddin SM, Zhu K, Lira-Cantu M. Nat Energy, 2020, 5: 35–49

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22179037), Shanghai pilot program for Basic Research (22TQ1400100-1), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03, 21JC1401700), the Programmer of Introducing Talents of Discipline to Universities (B16017), and the Fundamental Research Funds for the Central Universities. Yue Hu acknowledges support from Royal Society of Chemistry (R23-0749928359). We thank the Research Center of Analysis and Test of East China University of Science and Technology (ECUST); Prof. Yan Li and Mr. Zhuohan Lin from ECUST for EL measurement, Mrs. Meng**g Li from Shiyanjia Lab (www.shiyanjia.com) for the UPS measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information for

11426_2023_1966_MOESM1_ESM.pdf

Efficient wide-bandgap perovskite solar cells with open-circuit voltage deficit below 0.4 V via hole-selective interface engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Zhang, S., Yu, F. et al. Efficient wide-bandgap perovskite solar cells with open-circuit voltage deficit below 0.4 V via hole-selective interface engineering. Sci. China Chem. 67, 2102–2110 (2024). https://doi.org/10.1007/s11426-023-1966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1966-1

Navigation