Log in

Chiral Brønsted acid-catalyzed asymmetric intermolecular [4 + 2] annulation of ynamides with para-quinone methides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Catalytic asymmetric transformations of ynamides have attracted considerable attention in recent years. However, most of them were limited to intramolecular reactions or required metal catalysts. Herein, a chiral Brønsted acid-catalyzed asymmetric intermolecular [4 + 2] annulation of ynamides with para-quinone methides (p-QMs) is disclosed, which not only represents the first metal-free protocol for catalytic asymmetric nucleophilic addition of ynamides to electrophiles, but also constitutes the first enantioselective annulation between p-QMs and alkynes. This methodology leads to the practical synthesis of biologically important chiral 4-aryl-3,4-dihydrocoumarins and 4-aryl-coumarins. Preliminary control experiments indicate that the ortho-hydroxyphenyl substituted p-QMs could isomerize into ortho-quinone methides (o-QMs) in the presence of chiral catalyst, which further react with ynamides via enantioselective [4 + 2] annulation, to generate the chiral product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected examples for 4-aryl-3,4-dihydrocoumarins in natural products and bioactive molecules, see: (a) Li GT, Li ZK, Gu Q, You SL. Org Lett, 2017, 19: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  2. Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M. J Med Chem, 2008, 51: 1203–1213

    Article  CAS  PubMed  Google Scholar 

  3. Yao CS, Lin M, Wang L. Chem Pharm Bull, 2006, 54: 1053–1057

    Article  CAS  Google Scholar 

  4. Zhang X, Wang H, Song Y, Nie L, Wang L, Liu B, Shen P, Liu Y. Bioorg Med Chem Lett, 2006, 16: 949–953

    Article  CAS  PubMed  Google Scholar 

  5. Iinuma M, Tanaka T, Takenaka M, Mizuno M, Asai F. Phytochemistry, 1992, 31: 2487–2490

    Article  Google Scholar 

  6. Nonaka G, Kawa-hara O, Nishioka I. Chem Pharm Bull, 1982, 30: 4277–4282

    Article  CAS  Google Scholar 

  7. Leitis Z. Chem Heterocycl Comp, 2016, 52: 527–529

    Article  CAS  Google Scholar 

  8. Kamat DP, Tilve SG, Kamat VP, Kirtany JK. Org Prep Proc Int, 2015, 47: 1–79

    Article  CAS  Google Scholar 

  9. Sudo A, Uenishi K, Endo T. Polym Int, 2009, 58: 970–975

    Article  CAS  Google Scholar 

  10. For selected reviews on p-QMs, see: (a) Singh G, Pandey R, Pankhade YA, Fatma S, Anand RV. Chem Record, 2021, 21: 4150–4173

    Article  CAS  Google Scholar 

  11. Lima CGS, Pauli FP, Costa DCS, de Souza AS, Forezi LSM, Ferreira VF, de Carvalho da Silva F. Eur J Org Chem, 2020, 2020: 2650–2692

    Article  CAS  Google Scholar 

  12. Wang JY, Hao WJ, Tu SJ, Jiang B. Org Chem Front, 2020, 7: 1743–1778

    Article  CAS  Google Scholar 

  13. Li W, Xu X, Zhang P, Li P. Chem Asian J, 2018, 13: 2350–2359

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan P, Kaya U, Enders D. Adv Synth Catal, 2017, 359: 888–912

    Article  CAS  Google Scholar 

  15. Parra A, Tortosa M. ChemCatChem, 2015, 7: 1524–1526

    Article  CAS  Google Scholar 

  16. Caruana L, Fochi M, Bernardi L. Molecules, 2015, 20: 11733–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. For selected examples on catalytic asymmetric reactions involving p-QMs: (a) Zurro M, Ge L, Harutyunyan SR. Org Lett, 2022, 24: 6686–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santra S, Porey A, Jana B, Guin J. Chem Sci, 2018, 9: 6446–6450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li W, Xu X, Liu Y, Gao H, Cheng Y, Li P. Org Lett, 2018, 20: 1142–1145

    Article  CAS  PubMed  Google Scholar 

  20. Chen M, Sun J. Angew Chem Int Ed, 2017, 56: 4583–4587

    Article  CAS  Google Scholar 

  21. Li S, Liu Y, Huang B, Zhou T, Tao H, **ao Y, Liu L, Zhang J. ACS Catal, 2017, 7: 2805–2809

    Article  CAS  Google Scholar 

  22. Zhao K, Zhi Y, Wang A, Enders D. ACS Catal, 2016, 6: 657–660

    Article  CAS  Google Scholar 

  23. Ma C, Huang Y, Zhao Y. ACS Catal, 2016, 6: 6408–6412

    Article  CAS  Google Scholar 

  24. Dong N, Zhang ZP, Xue XS, Li X, Cheng JP. Angew Chem Int Ed, 2016, 55: 1460–1464

    Article  CAS  Google Scholar 

  25. Wang Z, Wong YF, Sun J. Angew Chem Int Ed, 2015, 54: 13711–13714

    Article  CAS  Google Scholar 

  26. Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew Chem Int Ed, 2015, 54: 12134–12138

    Article  CAS  Google Scholar 

  27. Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J Am Chem Soc, 2014, 136: 15929–15932

    Article  CAS  PubMed  Google Scholar 

  28. Chu WD, Zhang LF, Bao X, Zhao XH, Zeng C, Du JY, Zhang GB, Wang FX, Ma XY, Fan CA. Angew Chem Int Ed, 2013, 52: 9229–9233

    Article  CAS  Google Scholar 

  29. For recent selected examples on catalytic asymmetric annulation for ortho-hydroxyphenyl substituted p-QMs, see: (a) **ang M, Li CY, Song XJ, Zou Y, Huang ZC, Li X, Tian F, Wang LX. Chem Commun, 2020, 56: 14825–14828

    Article  CAS  Google Scholar 

  30. Wang JR, Jiang XL, Hang QQ, Zhang S, Mei GJ, Shi F. J Org Chem, 2019, 84: 7829–7839

    Article  CAS  PubMed  Google Scholar 

  31. Yang GH, Zhao Q, Zhang ZP, Zheng HL, Chen L, Li X. J Org Chem, 2019, 84: 7883–7893

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Li S, Chen XY, Rissanen K, Enders D. Org Lett, 2018, 20: 3622–3626

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Yuan Z, Pan R, Zeng Y, Lin A, Yao H, Huang Y. Org Chem Front, 2018, 5: 623–628

    Article  CAS  Google Scholar 

  34. Jiang XL, Wu SF, Wang JR, Mei GJ, Shi F. Adv Synth Catal, 2018, 360: 4225–4235

    Article  CAS  Google Scholar 

  35. Li W, Yuan H, Liu Z, Zhang Z, Cheng Y, Li P. Adv Synth Catal, 2018, 360: 2460–2464

    Article  CAS  Google Scholar 

  36. Zhang ZP, Chen L, Li X, Cheng JP. J Org Chem, 2018, 83: 2714–2724

    Article  CAS  PubMed  Google Scholar 

  37. Zhang ZP, **e KX, Yang C, Li M, Li X. J Org Chem, 2018, 83: 364–373

    Article  PubMed  Google Scholar 

  38. Zhang L, Liu Y, Liu K, Liu Z, He N, Li W. Org Biomol Chem, 2017, 15: 8743–8747

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Zhou X, Li P, Liu Z, Liu Y, Sun Y, Li W. RSC Adv, 2017, 7: 39216–39220

    Article  CAS  Google Scholar 

  40. Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew Chem Int Ed, 2016, 55: 12104–12108

    Article  CAS  Google Scholar 

  41. For recent reviews on ynamide reactivity, see: (a) Hu YC, Zhao Y, Wan B, Chen QA. Chem Soc Rev, 2021, 50: 2582–2625

    Article  CAS  PubMed  Google Scholar 

  42. Chen YB, Qian PC, Ye LW. Chem Soc Rev, 2020, 49: 8897–8909

    Article  CAS  PubMed  Google Scholar 

  43. Hong FL, Ye LW. Acc Chem Res, 2020, 53: 2003–2019

    Article  CAS  PubMed  Google Scholar 

  44. Lynch CC, Sripada A, Wolf C. Chem Soc Rev, 2020, 49: 8543–8583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo J, Chen GS, Chen SJ, Yu JS, Li ZD, Liu YL. ACS Catal, 2020, 10: 13978–13992

    Article  CAS  Google Scholar 

  46. Zhou B, Tan TD, Zhu XQ, Shang M, Ye LW. ACS Catal, 2019, 9: 6393–6406

    Article  CAS  Google Scholar 

  47. Evano G, Theunissen C, Lecomte M. Aldrichimica Acta, 2015, 48: 59–70

    CAS  Google Scholar 

  48. Wang XN, Yeom HS, Fang LC, He S, Ma ZX, Kedrowski BL, Hsung RP. Acc Chem Res, 2014, 47: 560–578

    Article  CAS  PubMed  Google Scholar 

  49. DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem Rev, 2010, 110: 5064–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Evano G, Coste A, Jouvin K. Angew Chem Int Ed, 2010, 49: 2840–2859

    Article  CAS  Google Scholar 

  51. Zhou B, Zhang YQ, Zhang K, Yang MY, Chen YB, Li Y, Peng Q, Zhu SF, Zhou QL, Ye LW. Nat Commun, 2019, 10: 3234

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang YQ, Chen YB, Liu JR, Wu SQ, Fan XY, Zhang ZX, Hong X, Ye LW. Nat Chem, 2021, 13: 1093–1100

    Article  CAS  PubMed  Google Scholar 

  53. Chen PF, Zhou B, Wu P, Wang B, Ye LW. Angew Chem Int Ed, 2021, 60: 27164–27170

    Article  CAS  Google Scholar 

  54. Li HH, Zhang YP, Zhai TY, Liu BY, Shi CY, Zhou JM, Ye LW. Org Chem Front, 2022, 9: 3709–3717

    Article  CAS  Google Scholar 

  55. Wang ZS, Zhu LJ, Li CT, Liu BY, Hong X, Ye LW. Angew Chem Int Ed, 2022, 61: e202201436

    CAS  Google Scholar 

  56. Zhang ZX, Wang X, Jiang JT, Chen J, Zhu XQ, Ye LW. Chin Chem Lett, 2023, 34: 107647

    Article  CAS  Google Scholar 

  57. Moskowitz M, Wolf C. Angew Chem IntEd, 2019, 58: 3402–3406

    Article  CAS  Google Scholar 

  58. Cook AM, Wolf C. Angew Chem Int Ed, 2016, 55: 2929–2933

    Article  CAS  Google Scholar 

  59. Cook AM, Wolf C. Chem Commun, 2014, 50: 3151–3154

    Article  CAS  Google Scholar 

  60. Schotes C, Mezzetti A. Angew Chem Int Ed, 2011, 50: 3072–3074

    Article  CAS  Google Scholar 

  61. Aikawa K, Hioki Y, Shimizu N, Mikami K. J Am Chem Soc, 2011, 133: 20092–20095

    Article  CAS  PubMed  Google Scholar 

  62. Enomoto K, Oyama H, Nakada M. Chem Eur J, 2015, 21: 2798–2802

    Article  CAS  PubMed  Google Scholar 

  63. For alternative examples on transition metal-catalyzed asymmetric cycloaddition of ynamides via cyclometallation type approach, see: (a) Straker RN, Peng Q, Mekareeya A, Paton RS, Anderson EA. Nat Commun, 2016, 7: 10109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oppenheimer J, Hsung RP, Figueroa R, Johnson WL. Org Lett, 2007, 9: 3969–3972

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka K, Takeishi K, Noguchi K. J Am Chem Soc, 2006, 128: 4586–4587

    Article  CAS  PubMed  Google Scholar 

  66. Qi LJ, Li CT, Huang ZQ, Jiang JT, Zhu XQ, Lu X, Ye LW. Angew Chem Int Ed, 2022, 61: e202210637

    CAS  Google Scholar 

  67. Zhu GY, Zhou JJ, Liu LG, Li X, Zhu XQ, Lu X, Zhou JM, Ye LW. Angew Chem Int Ed, 2022, 61: e202204603

    CAS  Google Scholar 

  68. Hong FL, Shi CY, Hong P, Zhai TY, Zhu XQ, Lu X, Ye LW. Angew Chem Int Ed, 2022, 61: e202115554

    CAS  Google Scholar 

  69. Zhang YQ, Zhang YP, Zheng YX, Li ZY, Ye LW. Cell Rep Phys Sci, 2021, 2: 100448–100463

    Article  CAS  Google Scholar 

  70. Zhu XQ, Hong P, Zheng YX, Zhen YY, Hong FL, Lu X, Ye LW. Chem Sci, 2021, 12: 9466–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu BH, Zheng YX, Kang W, Deng C, Zhou JM, Ye LW. Sci China Chem, 2021, 64: 1985–1989

    Article  CAS  Google Scholar 

  72. Wang ZS, Chen YB, Zhang HW, Sun Z, Zhu C, Ye LW. J Am Chem Soc, 2020, 142: 3636–3644

    Article  CAS  PubMed  Google Scholar 

  73. Liu X, Wang ZS, Zhai TY, Luo C, Zhang YP, Chen YB, Deng C, Liu RS, Ye LW. Angew Chem Int Ed, 2020, 59: 17984–17990

    Article  CAS  Google Scholar 

  74. Hong FL, Chen YB, Ye SH, Zhu GY, Zhu XQ, Lu X, Liu RS, Ye LW. J Am Chem Soc, 2020, 142: 7618–7626

    Article  CAS  PubMed  Google Scholar 

  75. For selected examples about 4-aryl-coumarins in natural products and bioactive molecules, see: (a) Yun Y, Yang J, Miao Y, Wang X, Sun J. Bioorg Med Chem Lett, 2021, 30: 126900–126906

    Article  Google Scholar 

  76. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR. J Med Chem, 1993, 36: 4131–4138

    Article  CAS  PubMed  Google Scholar 

  77. Brenzan MA, Nakamura CV, Dias Filho BP, Ueda-Naka-mura T, Young MCM, Côrrea AG, Júnior JA, dos Santos AO, Cortez DAG. Biomed Pharmacother, 2008, 62: 651–658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST) (2021YFC2100100), the National Natural Science Foundation of China (22125108, 22121001, 92056104), the President Research Funds from **amen University (20720210002), the Natural Science Foundation of Jiangsu Province (BK20211059), the Project of Science and Technology of Xuzhou Government (KC22080), and the National Fund for Fostering Talents of Basic Science (NFFTBS) (J1310024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-**n Zhang, Zhou Xu or Long-Wu Ye.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HH., Meng, YN., Chen, CM. et al. Chiral Brønsted acid-catalyzed asymmetric intermolecular [4 + 2] annulation of ynamides with para-quinone methides. Sci. China Chem. 66, 1467–1473 (2023). https://doi.org/10.1007/s11426-022-1536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1536-9

Navigation