Log in

Cocrystal engineering: towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Near-infrared organic phototransistors have wide application prospects in many fields. The active materials with the high mobility and near-infrared response are critical to building high-performance near-infrared organic phototransistors, which are scarce at present. Herein, a new charge transfer cocrystal using 5,7-dihydroindolo[2,3-b]carbazole (5,7-ICZ) as the donor and 2,2′-(benzo[1,2-b:4,5-b′]dithiophene-4,8-diylidene)dimalononitrile (DTTCNQ) as the acceptor is properly designed and prepared in a stoichiometric ratio (D:A=1:1), which not only displays a high electron mobility of 0.15 cm2 V−1 s−1 and very low dark current, but also can serve as the active layer materials in the region of near-infrared detection due to the narrowed band gap and good charge transport properties. A high photosensitivity of 1.8×104, the ultrahigh photoresponsivity of 2,923 A W−1 and the high detectivity of 4.26×1011 Jones of the organic near-infrared phototransistors are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C, Zhang X, Hu W. Chem Soc Rev, 2020, 49: 653–670

    CAS  PubMed  Google Scholar 

  2. Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Adv Mater, 2013, 25: 4267–4295

    CAS  PubMed  Google Scholar 

  3. Yao Y, Chen Y, Wang H, Samorì P. SmartMat, 2020, 1: e1009

    Google Scholar 

  4. Kublitski J, Fischer A, **ng S, Baisinger L, Bittrich E, Spoltore D, Benduhn J, Vandewal K, Leo K. Nat Commun, 2021, 12: 4259

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li S, Zhang Z, Chen X, Deng W, Lu Y, Sui M, Gong F, Xu G, Li X, Liu F, You C, Chu F, Wu Y, Yan H, Zhang Y. Adv Mater, 2022, 34: 2107734

    CAS  Google Scholar 

  6. Tao J, Liu D, Qin Z, Shao B, **g J, Li H, Dong H, Xu B, Tian W. Adv Mater, 2020, 32: 1907791

    CAS  Google Scholar 

  7. Liu C, Wang K, Gong X, Heeger AJ. Chem Soc Rev, 2016, 45: 4825–4846

    CAS  PubMed  Google Scholar 

  8. Zheng B, Huo L. Sci China Chem, 2021, 64: 358–384

    CAS  Google Scholar 

  9. Wu YL, Fukuda K, Yokota T, Someya T. Adv Mater, 2019, 31: 1903687

    CAS  Google Scholar 

  10. García de Arquer FP, Armin A, Meredith P, Sargent EH. Nat Rev Mater, 2017, 2: 16100

    Google Scholar 

  11. Sargent EH. Adv Mater, 2008, 20: 3958–3964

    CAS  Google Scholar 

  12. Gong X, Tong M, **a Y, Cai W, Moon JS, Cao Y, Yu G, Shieh CL, Nilsson B, Heeger AJ. Science, 2009, 325: 1665–1667

    CAS  PubMed  Google Scholar 

  13. Zhang L, Yang T, Shen L, Fang Y, Dang L, Zhou N, Guo X, Hong Z, Yang Y, Wu H, Huang J, Liang Y. Adv Mater, 2015, 27: 6496–6503

    CAS  PubMed  Google Scholar 

  14. Chen CC, Dou L, Zhu R, Chung CH, Song TB, Zheng YB, Hawks S, Li G, Weiss PS, Yang Y. ACS Nano, 2012, 6: 7185–7190

    CAS  PubMed  Google Scholar 

  15. Liang Y, Yu L. Acc Chem Res, 2010, 43: 1227–1236

    CAS  PubMed  Google Scholar 

  16. Zhou K, Dai K, Liu C, Shen C. SmartMat, 2020, 1: e1010

    Google Scholar 

  17. Miao J, Du M, Fang Y, Zhang X, Zhang F. Sci China Chem, 2019, 62: 1619–1624

    CAS  Google Scholar 

  18. Zhang X, Dong H, Hu W. Adv Mater, 2018, 30: 1801048

    Google Scholar 

  19. Kim KH, Bae SY, Kim YS, Hur JA, Hoang MH, Lee TW, Cho MJ, Kim Y, Kim M, ** JI, Kim SJ, Lee K, Lee SJ, Choi DH. Adv Mater, 2011, 23: 3095–3099

    CAS  PubMed  Google Scholar 

  20. Ji D, Li T, Liu J, Amirjalayer S, Zhong M, Zhang ZY, Huang X, Wei Z, Dong H, Hu W, Fuchs H. Nat Commun, 2019, 10: 12

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao G, Liu J, Meng Q, Ji D, Zhang X, Zou Y, Zhen Y, Dong H, Hu W. Adv Electron Mater, 2015, 1: 1500071

    Google Scholar 

  22. Zhang J, Geng H, Virk TS, Zhao Y, Tan J, Di C, Xu W, Singh K, Hu W, Shuai Z, Liu Y, Zhu D. Adv Mater, 2012, 24: 2603–2607

    CAS  PubMed  Google Scholar 

  23. Qin Y, Zhang J, Zheng X, Geng H, Zhao G, Xu W, Hu W, Shuai Z, Zhu D. Adv Mater, 2014, 26: 4093–4099

    CAS  PubMed  Google Scholar 

  24. Yu P, Li Y, Zhao H, Zhu L, Wang Y, Xu W, Zhen Y, Wang X, Dong H, Zhu D, Hu W. Small, 2021, 17: 2006574

    CAS  Google Scholar 

  25. Sun L, Wang Y, Yang F, Zhang X, Hu W. Adv Mater, 2019, 31: 1902328

    Google Scholar 

  26. ** J, Wu S, Ma Y, Dong C, Wang W, Liu X, Xu H, Long G, Zhang M, Zhang J, Huang W. ACS Appl Mater Interfaces, 2020, 12: 19718–19726

    CAS  PubMed  Google Scholar 

  27. Sun L, Zhu W, Zhang X, Li L, Dong H, Hu W. J Am Chem Soc, 2021, 143: 19243–19256

    CAS  PubMed  Google Scholar 

  28. Huang Y, Wang Z, Chen Z, Zhang Q. Angew Chem Int Ed, 2019, 58: 9696–9711

    CAS  Google Scholar 

  29. Boterashvili M, Lahav M, Shankar S, Facchetti A, van der Boom ME. J Am Chem Soc, 2014, 136: 11926–11929

    CAS  PubMed  Google Scholar 

  30. Wang Y, Li Y, Zhu W, Liu J, Zhang X, Li R, Zhen Y, Dong H, Hu W. Nanoscale, 2016, 8: 14920–14924

    CAS  PubMed  Google Scholar 

  31. Wang Y, Wu H, Zhu W, Zhang X, Liu Z, Wu Y, Feng C, Dang Y, Dong H, Fu H, Hu W. Angew Chem Int Ed, 2021, 60: 6344–6350

    CAS  Google Scholar 

  32. Wang Z, Yu F, **e J, Zhao J, Zou Y, Wang Z, Zhang Q. Chem Eur J, 2020, 26: 3578–3585

    CAS  PubMed  Google Scholar 

  33. Kufer D, Konstantatos G. ACS Photonics, 2016, 3: 2197–2210

    CAS  Google Scholar 

  34. Luo L, Huang W, Ju Z, Mu Z, Wang W, Zhou Y, Zhang J, Huang W. Org Electron, 2022, 100: 106363

    CAS  Google Scholar 

  35. Umland TC, Allie S, Kuhlmann T, Coppens P. J Phys Chem, 1988, 92: 6456–6460

    CAS  Google Scholar 

  36. Chappell JS, Bloch AN, Bryden WA, Maxfield M, Poehler TO, Cowan DO. J Am Chem Soc, 1981, 103: 2442–2443

    CAS  Google Scholar 

  37. Tang Q, Tong Y, Li H, Hu W. Appl Phys Lett, 2008, 92: 083309

    Google Scholar 

  38. Kim J, Joo CW, Hassan SZ, Yu SH, Kang M, Pi JE, Kang SY, Park YS, Chung DS. Mater Horiz, 2021, 8: 3141–3148

    CAS  PubMed  Google Scholar 

  39. Feng J, Gong C, Gao H, Wen W, Gong Y, Jiang X, Zhang B, Wu Y, Wu Y, Fu H, Jiang L, Zhang X. Nat Electron, 2018, 1: 404–410

    CAS  Google Scholar 

  40. Gao H, Feng J, Zhang B, **ao C, Wu Y, Kan X, Su B, Wang Z, Hu W, Sun Y, Jiang L, Heeger AJ. Adv Funct Mater, 2017, 27: 1701347

    Google Scholar 

  41. Zhu W, Yi Y, Zhen Y, Hu W. Small, 2015, 11: 2150–2156

    CAS  PubMed  Google Scholar 

  42. Zhang J, Tan J, Ma Z, Xu W, Zhao G, Geng H, Di C’, Hu W, Shuai Z, Singh K, Zhu D. J Am Chem Soc, 2013, 135: 558–561

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2018YFA0703200 and 2017YFA0204503), the National Natural Science Foundation of China (52121002, 51733004, U21A6002, 51725304 and 21875158), Tian** Natural Science Foundation (20JCJQJC00300) and China Postdoctoral Science Foundation (2021M692381).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjie Sun or **aotao Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2022_1450_MOESM1_ESM.pdf

Cocrystal engineering: towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zheng, L., Sun, Y. et al. Cocrystal engineering: towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals. Sci. China Chem. 66, 266–272 (2023). https://doi.org/10.1007/s11426-022-1450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1450-0

Navigation