Log in

Multifunctional indaceno[1,2-b:5,6-b′]dithiophene chloride molecule for stable high-efficiency perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The additive strategy has emerged as an effective approach to improving the performance of perovskite solar cells (PSCs). Herein, a small acceptor-donor-acceptor type molecule indaceno[1,2-b:5,6-b′]dithiophene chloride (IDT-Cl) is designed and synthesized to advance both the efficiency and stability of FA0.85MA0.15PbI3 PSCs. Within the IDT-Cl molecule, the S-group with high electron density promotes chemical bonding with the lead cations in the perovskite, resulting in enlarged grain size and smoother surface topography of the perovskite absorber. In addition, the undercoordinated lead ions in the perovskite layer may be passivated by the carbonyl group in the 5-chloroindolin-2-one unit, thereby reducing the number of nonradiative recombination centers. Meanwhile, the IDT-Cl adjusts the energy level mismatch between the perovskite and two adjacent carrier transport layers, leading to easy charge collection. By the multifunctional effect of the IDT-Cl molecule, the modified device yields a high power conversion efficiency (PCE) of 24.46%, 8.8% higher than that of the control PSC (22.48%). More importantly, the hydrophobic alkyl side-chain of the IDT-Cl molecule further ensures enhanced humidity stability of the perovskite film and environmental, thermal, and light stabilities of the PSC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Innocenzo V, Grancini G, Alcocer MJP, Kandada ARS, Stranks SD, Lee MM, Lanzani G, Snaith HJ, Petrozza A. Nat Commun, 2014, 5: 3586

    PubMed  Google Scholar 

  2. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. Adv Mater, 2014, 26: 1584–1589

    CAS  PubMed  Google Scholar 

  3. Mitzi DB. J Chem Soc Dalton Trans, 2001, 7: 1–12

    Google Scholar 

  4. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344

    CAS  PubMed  Google Scholar 

  5. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    CAS  PubMed  Google Scholar 

  6. Jiang J, Wang Q, ** Z, Zhang X, Lei J, Bin H, Zhang ZG, Li Y, Liu SF. Adv Energy Mater, 2018, 8: 1701757–1701759

    Google Scholar 

  7. Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, Paik MJ, Kim YK, Kim KS, Kim MG, Shin TJ, Il Seok S. Nature, 2021, 598: 444–450

    CAS  PubMed  Google Scholar 

  8. Li D, Chao L, Chen C, Ran X, Wang Y, Niu T, Lv S, Wu H, **a Y, Ran C, Song L, Chen S, Chen Y, Huang W. Nano Lett, 2020, 20: 5799–5806

    CAS  PubMed  Google Scholar 

  9. Bai Y, Meng X, Yang S. Adv Energy Mater, 2018, 8: 1701883

    Google Scholar 

  10. https://www.nrel.gov/pv/cell-efficiency.html, accessed on 2022-07-07

  11. Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y. Nano Lett, 2014, 14: 4158–4163

    CAS  PubMed  Google Scholar 

  12. Yang IS, Park N. Adv Funct Mater, 2021, 31: 2100396–2100397

    CAS  Google Scholar 

  13. Chao L, Niu T, Gao W, Ran C, Song L, Chen Y, Huang W. Adv Mater, 2021, 33: 2005410

    CAS  Google Scholar 

  14. Zhang F, Zhu K. Adv Energy Mater, 2019, 10: 1902579

    Google Scholar 

  15. Cao K, Huang Y, Ge M, Huang F, Shi W, Wu Y, Cheng Y, Qian J, Liu L, Chen S. ACS Appl Mater Interfaces, 2021, 13: 26013–26022

    CAS  PubMed  Google Scholar 

  16. Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540–15547

    CAS  PubMed  Google Scholar 

  17. Li G, Song J, Wu J, Song Z, Wang X, Sun W, Fan L, Lin J, Huang M, Lan Z, Gao P. ACS Energy Lett, 2021, 6: 3614–3623

    CAS  Google Scholar 

  18. Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell JJ, Kanjanaboos P, Sun JP, Lan X, Quan LN, Kim DH, Hill IG, Maksymovych P, Sargent EH. Nat Commun, 2015, 6: 7081

    CAS  PubMed  Google Scholar 

  19. Lin HK, Su YW, Chen HC, Huang YJ, Wei KH. ACS Appl Mater Interfaces, 2016, 8: 24603–24611

    CAS  PubMed  Google Scholar 

  20. Lin HK, Li JX, Wang HC, Su YW, Wu KH, Wei KH. RSC Adv, 2018, 8: 12526–12534

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan S, Huang T, Yavuz I, Wang R, Weber MH, Zhao Y, Abdelsamie M, Liao ME, Wang HC, Huynh K, Wei KH, Xue J, Babbe F, Goorsky MS, Lee JW, Sutter-Fella CM, Yang Y. J Am Chem Soc, 2021, 143: 6781–6786

    CAS  PubMed  Google Scholar 

  22. Kim K, Wu Z, Han JY, Ma Y, Lee S, Jung SK, Lee JW, Woo HY, Jeon I. Adv Energy Mater, 2022, 17: 2004576–2004590

    Google Scholar 

  23. Liu F, **ng Z, Ren Y, Huang RJ, Xu PY, **e FF, Li SH, Zhong X. Nano Mater, 2022, 12: 1046

    Google Scholar 

  24. Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343

    CAS  PubMed  Google Scholar 

  25. Lee JW, Bae SH, Hsieh YT, De Marco N, Wang M, Sun P, Yang Y. Chem, 2017, 3: 290–302

    CAS  Google Scholar 

  26. Zhu H, Ren Y, Pan L, Ouellette O, Eickemeyer FT, Wu Y, Li X, Wang S, Liu H, Dong X, Zakeeruddin SM, Liu Y, Hagfeldt A, Grätzel M. J Am Chem Soc, 2021, 143: 3231–3237

    CAS  PubMed  Google Scholar 

  27. Wang K, Liu J, Yin J, Aydin E, Harrison GT, Liu W, Chen S, Mohammed OF, De Wolf S. Adv Funct Mater, 2020, 30: 2002861

    CAS  Google Scholar 

  28. Choi H, Liu X, Kim HI, Kim D, Park T, Song S. Adv Energy Mater, 2021, 11: 2003829

    CAS  Google Scholar 

  29. Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I. J Am Chem Soc, 2010, 132: 11437–11439

    CAS  PubMed  Google Scholar 

  30. Zhao W, Lin H, Li Y, Wang D, Wang J, Liu Z, Yuan N, Ding J, Wang Q, Liu SF. Adv Funct Mater, 2022, 32: 2112032

    CAS  Google Scholar 

  31. Xu YX, Chueh CC, Yip HL, Ding FZ, Li YX, Li CZ, Li X, Chen WC, Jen AKY. Adv Mater, 2012, 24: 6356–6361

    CAS  PubMed  Google Scholar 

  32. Li X, Chen CC, Cai M, Hua X, **e F, Liu X, Hua J, Long YT, Tian H, Han L. Adv Energy Mater, 2018, 8: 1800715–1800717

    Google Scholar 

  33. Zhang M, Wang J, Li L, Zheng G, Liu K, Qin M, Zhou H, Zhan X. Adv Sci, 2017, 4: 1700025

    Google Scholar 

  34. Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J. Adv Mater, 2012, 24: 6536–6541

    CAS  PubMed  Google Scholar 

  35. Wu C, Chen C, Tao L, Ding X, Zheng M, Li H, Li G, Lu H, Cheng M. J Energy Chem, 2020, 43: 98–103

    Google Scholar 

  36. Wu T, Liu X, He X, Wang Y, Meng X, Noda T, Yang X, Han L. Sci China Chem, 2020, 63: 107–115

    CAS  Google Scholar 

  37. Han L, Cong S, Yang H, Lou Y, Wang H, Huang J, Zhu J, Wu Y, Chen Q, Zhang B, Zhang L, Zou G. Sol RRL, 2018, 2: 1800054–1800059

    Google Scholar 

  38. Shao Y, **ao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784

    CAS  PubMed  Google Scholar 

  39. Yang D, Zhou X, Yang R, Yang Z, Yu W, Wang X, Li C, Liu SF, Chang RPH. Energy Environ Sci, 2016, 9: 3071–3078

    CAS  Google Scholar 

  40. Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y. Nat Commun, 2016, 7: 10214

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Z, Wu J, Yang Y, Lan Z, Lin J. ACS Appl Energy Mater, 2018, 1: 4050–4056

    CAS  Google Scholar 

  42. Bube RH. J Appl Phys, 1962, 33: 1733–1737

    CAS  Google Scholar 

  43. Li X, Li C, Wu Y, Cao J, Tang Y. Sci China Chem, 2020, 63: 777–784

    CAS  Google Scholar 

  44. Keeble DJ, Wiktor J, Pathak SK, Phillips LJ, Dickmann M, Durose K, Snaith HJ, Egger W. Nat Commun, 2021, 12: 5566

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q, Han Q, Zhang Y, Han L. Sci China Chem, 2022, 65: 1409–1417

    Google Scholar 

  46. Sun L, Zhang C, Yan L, Gao L, Ma T. J Solid State Chem, 2022, 307: 122826

    CAS  Google Scholar 

  47. Wang R, Xue J, Wang KL, Wang ZK, Luo Y, Fenning D, Xu G, Nuryyeva S, Huang T, Zhao Y, Yang JL, Zhu J, Wang M, Tan S, Yavuz I, Houk KN, Yang Y. Science, 2019, 366: 1509–1513

    CAS  PubMed  Google Scholar 

  48. Cai Y, Cui J, Chen M, Zhang M, Han Y, Qian F, Zhao H, Yang S, Yang Z, Bian H, Wang T, Guo K, Cai M, Dai S, Liu Z, Liu SF. Adv Funct Mater, 2020, 31: 2005776

    Google Scholar 

  49. Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Joule, 2019, 3: 2179–2192

    CAS  Google Scholar 

  50. **e F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942–1949

    CAS  Google Scholar 

  51. Liao H, Guo P, Hsu C, Lin M, Wang B, Zeng L, Huang W, Soe CMM, Su W, Bedzyk MJ, Wasielewski MR, Facchetti A, Chang RPH, Kanatzidis MG, Marks TJ. Adv Energy Mater, 2017, 7: 1601660

    Google Scholar 

  52. Mosconi E, Ronca E, De Angelis F. J Phys Chem Lett, 2014, 5: 2619–2625

    CAS  PubMed  Google Scholar 

  53. Bi D, Li X, Milić JV, Kubicki DJ, Pellet N, Luo J, LaGrange T, Mettraux P, Emsley L, Zakeeruddin SM, Grätzel M. Nat Commun, 2018, 9: 4482

    PubMed  PubMed Central  Google Scholar 

  54. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ. ACS Nano, 2014, 8: 9815–9821

    CAS  PubMed  Google Scholar 

  55. Jiang X, Ning Z. Sci China Chem, 2021, 64: 1607–1608

    CAS  Google Scholar 

  56. Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427–1804428

    Google Scholar 

  57. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W. J Phys Chem Lett, 2014, 5: 1511–1515

    CAS  PubMed  Google Scholar 

  58. Lu C, Zhu C, Meng L, Sun C, Lai W, Qin S, Zhang J, Huang W, Du J, Wang Y, Li Y. Sci China Chem, 2021, 64: 2035–2044

    CAS  Google Scholar 

  59. Zhang H, Yan Z, Xu Y, Wang X, Wu J, Lan Z. Adv Mater Inter, 2022, 9: 2101463

    CAS  Google Scholar 

  60. Qian F, Yuan S, Cai Y, Han Y, Zhao H, Sun J, Liu Z, Liu SF. Sol RRL, 2019, 3: 1900072–1900079

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (62174103, 62274104), the Fundamental Research Funds for the Central Universities (GK202103052), the Chang-jiang Scholar and the Innovative Research Team (IRT14R33), the 111 Project (B21005), and the Chinese National 1000-Talent-Plan Program (111001034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Wang, Qiang Wang or Shengzhong (Frank) Liu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Q., Liu, L. et al. Multifunctional indaceno[1,2-b:5,6-b′]dithiophene chloride molecule for stable high-efficiency perovskite solar cells. Sci. China Chem. 66, 185–194 (2023). https://doi.org/10.1007/s11426-022-1403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1403-6

Navigation