Log in

Phase transferring luminescent gold nanoclusters via single-stranded DNA

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Atomically precise gold nanoclusters (Au NCs) are an emerging class of quantum-sized nanomaterials with discrete electronic energy levels, which has led to a range of attractive electronic and optical applications. Nevertheless, the lack of general methods to transfer Au NCs protected with hydrophobic ligands to an aqueous solution hampers their use in physiological settings. Here, we developed a single-stranded DNA-based approach that could transfer ∼90% hydrophobic Au NCs into an aqueous solution. We experimentally and theoretically established that multivalent electrostatic and hydrophobic interactions between DNA strands and the hydrophobic ligand layer on Au NCs resulted in monodispersed DNA-coated Au NCs with high physical integrity in an aqueous solution. The fluorescence quantum yield of Au NCs was increased by ∼13 fold, and surface-constrained DNA retained the specific recognition ability for biosensing. We further demonstrated the versatility of this phase-transfer approach, which thus holds great potential to advance biological and medical applications of Au NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ** R, Zeng C, Zhou M, Chen Y. Chem Rev, 2016, 116: 10346–10413

    Article  CAS  PubMed  Google Scholar 

  2. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Science, 2007, 318: 430–433

    Article  CAS  PubMed  Google Scholar 

  3. Lin Y, Charchar P, Christofferson AJ, Thomas MR, Todorova N, Mazo MM, Chen Q, Doutch J, Richardson R, Yarovsky I, Stevens MM. J Am Chem Soc, 2018, 140: 18217–18226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan X, Setyawati MI, Tan AS, Ong CN, Leong DT, **e J. NPG Asia Mater, 2013, 5: e39

    Article  CAS  Google Scholar 

  5. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, **e J. J Am Chem Soc, 2012, 134: 16662–16670

    Article  CAS  PubMed  Google Scholar 

  6. Du B, Jiang X, Das A, Zhou Q, Yu M, ** R, Zheng J. Nat Nanotech, 2017, 12: 1096–1102

    Article  CAS  Google Scholar 

  7. Tao Y, Li M, Ren J, Qu X. Chem Soc Rev, 2015, 44: 8636–8663

    Article  CAS  PubMed  Google Scholar 

  8. Gu P, Chen B, Zhai T, Li Q, Zuo X, Wang L, Qin A, Zhou Y, Shen J. ACS Appl Mater Interfaces, 2021, 13: 19660–19667

    Article  CAS  PubMed  Google Scholar 

  9. Shen J, Tao K, Gu P, Gui C, Wang D, Tan Z, Wang L, Wang Z, Qin A, Tang BZ, Bao S. Sci China Chem, 2020, 63: 393–397

    Article  CAS  Google Scholar 

  10. Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K, Takano S, Tomihara R, Kaappa S, Malola S, Dinh CT, Padmos JD, Ayoo K, Garrett PJ, Nambo M, Horton JH, Sargent EH, Häkkinen H, Tsukuda T, Crudden CM. Nat Chem, 2019, 11: 419–425

    Article  CAS  PubMed  Google Scholar 

  11. Kang X, Wei X, **ang P, Tian X, Zuo Z, Song F, Wang S, Zhu M. Chem Sci, 2020, 11: 4808–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang SY, Kochovski Z, Lee HC, Lu Y, Zhang H, Zhang J, Sun JK, Yuan J. Chem Sci, 2019, 10: 1450–1456

    Article  CAS  PubMed  Google Scholar 

  13. Yuan X, Luo Z, Zhang Q, Zhang X, Zheng Y, Lee JY, **e J. ACS Nano, 2011, 5: 8800–8808

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Zhuang S, Liao L, Wang C, **a N, Gan Z, Gu W, Li J, Deng H, Wu Z. J Am Chem Soc, 2020, 142: 973–977

    Article  CAS  PubMed  Google Scholar 

  15. Demers LM, Ostblom M, Zhang H, Jang NH, Liedberg B, Mirkin CA. J Am Chem Soc, 2002, 124: 11248–11249

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Hong CY, Wu SX, Liang H, Wang LP, Huang G, Chen X, Yang HH, Shangguan D, Tan W. J Am Chem Soc, 2015, 137: 11210–11213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuzyk A, Urban MJ, Idili A, Ricci F, Liu N. Sci Adv, 2017, 3: e1602803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q. Adv Mater, 2017, 29: 1606533

    Article  CAS  Google Scholar 

  19. Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, Nam JM. Nat Nanotech, 2011, 6: 452–460

    Article  CAS  Google Scholar 

  20. Samanta A, Zhou Y, Zou S, Yan H, Liu Y. Nano Lett, 2014, 14: 5052–5057

    Article  CAS  PubMed  Google Scholar 

  21. Bain D, Paramanik B, Patra A. J Phys Chem C, 2017, 121: 4608–4617

    Article  CAS  Google Scholar 

  22. Jhaveri SD, Foos EE, Lowy DA, Chang EL, Snow AW, Ancona MG. Nano Lett, 2004, 4: 737–740

    Article  CAS  Google Scholar 

  23. Liu J. Phys Chem Chem Phys, 2012, 14: 10485–10496

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Li F, Li M, Mao X, **g X, Liu X, Li Q, Li J, Wang L, Fan C, Zuo X. J Am Chem Soc, 2019, 141: 17861–17866

    Article  CAS  PubMed  Google Scholar 

  25. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. Nat Mater, 2003, 2: 338–342

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C, Macfarlane RJ, Young KL, Choi CHJ, Hao L, Auyeung E, Liu G, Zhou X, Mirkin CA. Nat Mater, 2013, 12: 741–746

    Article  CAS  PubMed  Google Scholar 

  27. Li LL, Wu P, Hwang K, Lu Y. J Am Chem Soc, 2013, 135: 2411–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu C, Huang Z, Liu B, Liu Y, Ying Y, Liu J. Angew Chem Int Ed, 2017, 56: 6208–6212

    Article  CAS  Google Scholar 

  29. Ge H, Wang D, Pan Y, Guo Y, Li H, Zhang F, Zhu X, Li Y, Zhang C, Huang L. Angew Chem Int Ed, 2020, 59: 8133–8137

    Article  CAS  Google Scholar 

  30. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y. J Am Chem Soc, 2010, 132: 9274–9276

    Article  CAS  PubMed  Google Scholar 

  31. Sugiuchi M, Maeba J, Okubo N, Iwamura M, Nozaki K, Konishi K. J Am Chem Soc, 2017, 139: 17731–17734

    Article  CAS  PubMed  Google Scholar 

  32. Shichibu Y, Konishi K. Small, 2010, 6: 1216–1220

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Zhang QF, Williard PG, Wang LS. Inorg Chem, 2014, 53: 3932–3934

    Article  CAS  PubMed  Google Scholar 

  34. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. SoftwareX, 2015, 1–2: 19–25

    Article  Google Scholar 

  35. Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banáš P, Koča J, Cheatham Iii TE, Jurečka P, Šponer J. J Chem Theor Comput, 2012, 8: 2506–2520

    Article  CAS  Google Scholar 

  36. Qu Z, Zhang Y, Dai Z, Hao Y, Zhang Y, Shen J, Wang F, Li Q, Fan C, Liu X. Angew Chem Int Ed, 2021, 60: 16693–16699

    Article  CAS  Google Scholar 

  37. Qu ZB, Zhou X, Zhang M, Shen J, Li Q, Xu F, Kotov N, Fan C. Adv Mater, 2021, 33: 2007900

    Article  CAS  Google Scholar 

  38. Heinz H, Lin TJ, Kishore Mishra R, Emami FS. Langmuir, 2013, 29: 1754–1765

    Article  CAS  PubMed  Google Scholar 

  39. Bussi G, Donadio D, Parrinello M. J Chem Phys, 2007, 126: 014101

    Article  PubMed  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. J Chem Phys, 1984, 81: 3684–3690

    Article  CAS  Google Scholar 

  41. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. Comput Phys Commun, 2005, 167: 103–128

    Article  CAS  Google Scholar 

  42. Kruse H, Grimme S. J Chem Phys, 2012, 136: 154101

    Article  PubMed  CAS  Google Scholar 

  43. Wang S, Du L, ** Z, **n Y, Mattoussi H. J Am Chem Soc, 2020, 142: 12669–12680

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Chen T, Wu C, Qiu L, Hu R, Li J, Cansiz S, Zhang L, Cui C, Zhu G, You M, Zhang T, Tan W. J Am Chem Soc, 2014, 136: 12552–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen J, Tang Q, Li L, Li J, Zuo X, Qu X, Pei H, Wang L, Fan C. Angew Chem Int Ed, 2017, 56: 16077–16081

    Article  CAS  Google Scholar 

  46. Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Biosens Bioelectron, 2021, 176: 112898

    Article  CAS  PubMed  Google Scholar 

  47. Carnerero JM, Jimenez-Ruiz A, Castillo PM, Prado-Gotor R. Chem-PhysChem, 2017, 18: 17–33

    CAS  Google Scholar 

  48. He L, Mu J, Gang O, Chen X. Adv Sci, 2021, 8: 2003775

    Article  CAS  Google Scholar 

  49. Lee E, Lee CE, Han JH. J Korean Phys Soc, 2016, 69: 578–583

    Article  CAS  Google Scholar 

  50. Silvera Batista CA, Larson RG, Kotov NA. Science, 2015, 350: 1242477

    Article  CAS  Google Scholar 

  51. Ebrahimi SB, Samanta D, Mirkin CA. J Am Chem Soc, 2020, 142: 11343–11356

    Article  CAS  PubMed  Google Scholar 

  52. Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. ACS Nano, 2016, 10: 2591–2599

    Article  CAS  PubMed  Google Scholar 

  53. Ju E, Liu Z, Du Y, Tao Y, Ren J, Qu X. ACS Nano, 2014, 8: 6014–6023

    Article  CAS  PubMed  Google Scholar 

  54. Yuan Q, Wang Y, Zhao L, Liu R, Gao F, Gao L, Gao X. Nanoscale, 2016, 8: 12095–12104

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Sun D, Liu Y, Liu Z. Biosens Bioelectron, 2014, 55: 149–156

    Article  CAS  PubMed  Google Scholar 

  56. Leung KH, He HZ, Chan DSH, Fu WC, Leung CH, Ma DL. Sens Actuat B-Chem, 2013, 177: 487–492

    Article  CAS  Google Scholar 

  57. Ruigrok VJB, van Duijn E, Barendregt A, Dyer K, Tainer JA, Stoltenburg R, Strehlitz B, Levisson M, Smidt H, van der Oost J. ChemBioChem, 2012, 13: 829–836

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2020YFA0908104), the National Natural Science Foundation of China (91953106, 92056117, 21904087, 21705159), the Shanghai Municipal Science and Technology Commission (19JC1410300, 19ZR1474600, 20dz1101000, 21QA1404800), the Fundamental Research Funds for the Central Universities and Shanghai Jiao Tong University. We thank Prof. Yishi Wu (Capital Normal University) for providing the picosecond time-resolved luminescence measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlei Shen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://springer.longhoe.net/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, H., Qu, Z. et al. Phase transferring luminescent gold nanoclusters via single-stranded DNA. Sci. China Chem. 65, 1212–1220 (2022). https://doi.org/10.1007/s11426-022-1238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1238-2

Navigation