Log in

Application of electrochemistry to single-molecule junctions: from construction to modulation

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

State-of-the-art molecular electronics focus on the measurement of electrical properties of materials at the single-molecule level. Experimentally, molecular electronics face two primary challenges. One challenge is the reliable construction of single-molecule junctions, and the second challenge is the arbitrary modulation of electron transport through these junctions. Over the past decades, electrochemistry has been widely adopted to meet these challenges, leading to a wealth of novel findings. This review starts from the application of electrochemical methods to the fabrication of nanogaps, which is an essential platform for the construction of single-molecule junctions. The utilization of electrochemistry for the modification of molecular junctions, including terminal groups and structural backbones, is introduced, and finally, recent progress in the electrochemical modulation of single-molecule electron transport is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratner M. Nat Nanotech, 2013, 8: 378–381

    CAS  Google Scholar 

  2. Lörtscher E. Nat Nanotech, 2013, 8: 381–384

    Google Scholar 

  3. Elke S, Carlos CJ. Molecular Electronics: An Introduction to Theory and Experiment. Vol. 15. Singapore: World Scientific, 2017

    Google Scholar 

  4. Su TA, Li H, Steigerwald ML, Venkataraman L, Nuckolls C. Nat Chem, 2015, 7: 215–220

    CAS  PubMed  Google Scholar 

  5. Jia C, Migliore A, **n N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu DH, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X. Science, 2016, 352: 1443–1445

    CAS  PubMed  Google Scholar 

  6. Capozzi B, **a J, Adak O, Dell EJ, Liu ZF, Taylor JC, Neaton JB, Campos LM, Venkataraman L. Nat Nanotech, 2015, 10: 522–527

    CAS  Google Scholar 

  7. Guo C, Wang K, Zerah-Harush E, Hamill J, Wang B, Dubi Y, Xu B. Nat Chem, 2016, 8: 484–490

    CAS  PubMed  Google Scholar 

  8. Li Z, Smeu M, Afsari S, **ng Y, Ratner MA, Borguet E. Angew Chem Int Ed, 2014, 53: 1098–1102

    CAS  Google Scholar 

  9. Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald ML, Wu X, Liu Z, Guo X. Angew Chem Int Ed, 2012, 51: 12228–12232

    CAS  Google Scholar 

  10. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T. Nature, 2009, 462: 1039–1043

    CAS  PubMed  Google Scholar 

  11. Perrin ML, Verzijl CJO, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, Thijssen JM, van der Zant HSJ, Dulic D. Nat Nanotech, 2013, 8: 282–287

    CAS  Google Scholar 

  12. Aviram A, Ratner MA. Chem Phys Lett, 1974, 29: 277–283

    CAS  Google Scholar 

  13. **ang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440

    CAS  PubMed  Google Scholar 

  14. Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44: 889–901

    CAS  PubMed  Google Scholar 

  15. Xu B, Tao NJ. Science, 2003, 301: 1221–1223

    CAS  PubMed  Google Scholar 

  16. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. Nature, 2006, 442: 904–907

    CAS  PubMed  Google Scholar 

  17. **ang D, Jeong H, Lee T, Mayer D. Adv Mater, 2013, 25: 4845–4867

    CAS  PubMed  Google Scholar 

  18. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM. Nature, 2002, 419: 906–909

    CAS  PubMed  Google Scholar 

  19. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Science, 1997, 278: 252–254

    CAS  Google Scholar 

  20. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM. Science, 2001, 294: 571–574

    CAS  PubMed  Google Scholar 

  21. Ho Choi S, Kim B, Frisbie CD. Science, 2008, 320: 1482–1486

    PubMed  Google Scholar 

  22. Qin L, Park S, Huang L, Mirkin CA. Science, 2005, 309: 113–115

    CAS  PubMed  Google Scholar 

  23. Banholzer MJ, Qin L, Millstone JE, Osberg KD, Mirkin CA. Nat Protoc, 2009, 4: 838–848

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature, 2002, 417: 722–725

    CAS  PubMed  Google Scholar 

  25. Liang W, Shores MP, Bockrath M, Long JR, Park H. Nature, 2002, 417: 725–729

    CAS  PubMed  Google Scholar 

  26. Guo X, Small JP, Klare JE, Wang Y, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang L, O’brien S, Yan J, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C. Science, 2006, 311: 356–359

    CAS  PubMed  Google Scholar 

  27. Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W. Science, 2014, 344: 1135–1138

    CAS  PubMed  Google Scholar 

  28. Natterer FD, Yang K, Paul W, Willke P, Choi T, Greber T, Heinrich AJ, Lutz CP. Nature, 2017, 543: 226–228

    CAS  PubMed  Google Scholar 

  29. Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88–91

    PubMed  Google Scholar 

  30. Ciampi S, Darwish N, Aitken HM, Díez-Pérez I, Coote ML. Chem Soc Rev, 2018, 47: 5146–5164

    CAS  PubMed  Google Scholar 

  31. Huang C, Jevric M, Borges A, Olsen ST, Hamill JM, Zheng JT, Yang Y, Rudnev A, Baghernejad M, Broekmann P, Petersen AU, Wandlowski T, Mikkelsen KV, Solomon GC, Brandsted Nielsen M, Hong W. Nat Commun, 2017, 8: 15436

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen L, Feng A, Wang M, Liu J, Hong W, Guo X, **ang D. Sci China Chem, 2018, 61: 1368–1384

    CAS  Google Scholar 

  33. Reddy P, Jang SY, Segalman RA, Majumdar A. Science, 2007, 315: 1568–1571

    CAS  PubMed  Google Scholar 

  34. Cui L, Miao R, Wang K, Thompson D, Zotti LA, Cuevas JC, Meyhofer E, Reddy P. Nat Nanotech, 2018, 13: 122–127

    CAS  Google Scholar 

  35. Zhou XS, Wei YM, Liu L, Chen ZB, Tang J, Mao BW. J Am Chem Soc, 2008, 130: 13228–13230

    CAS  PubMed  Google Scholar 

  36. Li XL, Hua SZ, Chopra HD, Tao NJ. Micro Nano Lett, 2006, 1: 83–88

    CAS  Google Scholar 

  37. Li CZ, Tao NJ. Appl Phys Lett, 1998, 72: 894–896

    CAS  Google Scholar 

  38. Nedelcu M, Saifullah MSM, Hasko DG, Jang A, Anderson D, Huck WTS, Jones GAC, Welland ME, Kang DJ, Steiner U. Adv Funct Mater, 2010, 20: 2317–2323

    CAS  Google Scholar 

  39. Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N, Köhler J, Schmidt HW, Hildner R. Nature, 2015, 523: 196–199

    CAS  PubMed  Google Scholar 

  40. Muller C, van Ruitenbeek JMJ, de Jongh LJL. Phys Rev Lett, 1992, 69: 140–143

    CAS  PubMed  Google Scholar 

  41. Li CZ, He HX, Tao NJ. Appl Phys Lett, 2000, 77: 3995–3997

    CAS  Google Scholar 

  42. Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ. Appl Phys Lett, 2000, 76: 1333–1335

    CAS  Google Scholar 

  43. He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R. J Am Chem Soc, 2001, 123: 7730–7731

    CAS  PubMed  Google Scholar 

  44. **ang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D. Nano Lett, 2013, 13: 2809–2813

    CAS  PubMed  Google Scholar 

  45. Puebla-Hellmann G, Venkatesan K, Mayor M, Lörtscher E. Nature, 2018, 559: 232–235

    CAS  PubMed  Google Scholar 

  46. Kiguchi M, Konishi T, Murakoshi K. Appl Phys Lett, 2005, 87: 043104

    Google Scholar 

  47. Wang YH, Zhou XY, Sun YY, Han D, Zheng JF, Niu ZJ, Zhou XS. Electrochim Acta, 2014, 123: 205–210

    CAS  Google Scholar 

  48. Kiguchi M, Konishi T, Miura S, Murakoshi K. Nanotechnology, 2007, 18: 424011

    PubMed  Google Scholar 

  49. Kiguchi M, Murakoshi K. Appl Phys Lett, 2006, 88: 253112

    Google Scholar 

  50. Konishi T, Kiguchi M, Murakoshi K. Phys Rev B, 2010, 81: 125422

    Google Scholar 

  51. Konishi T, Kiguchi M, Murakoshi K. Surf Sci, 2008, 602: 2333–2336

    CAS  Google Scholar 

  52. Zhou XS, Liang JH, Chen ZB, Mao BW. Electrochem Commun, 2011, 13: 407–410

    CAS  Google Scholar 

  53. Lörtscher E, Ciszek JW, Tour J, Riel H. Small, 2006, 2: 973–977

    PubMed  Google Scholar 

  54. Yang Y, Tian JH, Luo ZZ, Wu ST, Tian ZQ. J Mater Eng, 2008, 36: 278–286

    Google Scholar 

  55. Tian JH, Yang Y, Liu B, Schöllhorn B, Wu DY, Maisonhaute E, Muns AS, Chen Y, Amatore C, Tao NJ, Tian ZQ. Nanotechnology, 2010, 21: 274012

    PubMed  Google Scholar 

  56. Yang Y, Liu JY, Chen ZB, Tian JH, ** X, Liu B, Li X, Luo ZZ, Lu M, Yang FZ, Tao N, Tian ZQ. Nanotechnology, 2011, 22: 275313

    PubMed  Google Scholar 

  57. Yang Y, Chen Z, Liu J, Lu M, Yang D, Yang F, Tian Z. Nano Res, 2011, 4: 1199–1207

    CAS  Google Scholar 

  58. Wen HM, Yang Y, Zhou XS, Liu JY, Zhang DB, Chen ZB, Wang JY, Chen ZN, Tian ZQ. Chem Sci, 2013, 4: 2471–2477

    CAS  Google Scholar 

  59. Yang Y, Liu J, Feng S, Wen H, Tian J, Zheng J, Schöllhorn B, Amatore C, Chen Z, Tian Z. Nano Res, 2016, 9: 560–570

    CAS  Google Scholar 

  60. Kolb D, Ullmann R, Will T. Science, 1997, 275: 1097–1099

    CAS  PubMed  Google Scholar 

  61. Zheng JT, Yan RW, Tian JH, Liu JY, Pei LQ, Wu DY, Dai K, Yang Y, ** S, Hong W, Tian ZQ. Electrochim Acta, 2016, 200: 268–275

    CAS  Google Scholar 

  62. Chen F, Li X, Hihath J, Huang Z, Tao N. J Am Chem Soc, 2006, 128: 15874–15881

    CAS  PubMed  Google Scholar 

  63. Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T. J Am Chem Soc, 2012, 134: 2292–2304

    CAS  PubMed  Google Scholar 

  64. Leary E, La Rosa A, González MT, Rubio-Bollinger G, Agraït N, Martin N. Chem Soc Rev, 2015, 44: 920–942

    CAS  PubMed  Google Scholar 

  65. Huang Z, Chen F, Bennett PA, Tao N. J Am Chem Soc, 2007, 129: 13225–13231

    CAS  PubMed  Google Scholar 

  66. Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML. Nano Lett, 2006, 6: 458–462

    CAS  PubMed  Google Scholar 

  67. Xu B, **ao X, Tao NJ. J Am Chem Soc, 2003, 125: 16164–16165

    CAS  PubMed  Google Scholar 

  68. Zhang YP, Chen LC, Zhang ZQ, Cao JJ, Tang C, Liu J, Duan LL, Huo Y, Shao X, Hong W, Zhang HL. J Am Chem Soc, 2018, 140: 6531–6535

    CAS  PubMed  Google Scholar 

  69. Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S, Chen W, Hybertsen MS, Breslow R, Venkataraman L. Nat Nanotech, 2011, 6: 353–357

    CAS  Google Scholar 

  70. Chen W, Widawsky JR, Vázquez H, Schneebeli ST, Hybertsen MS, Breslow R, Venkataraman L. J Am Chem Soc, 2011, 133: 17160–17163

    CAS  PubMed  Google Scholar 

  71. Hong W, Li H, Liu SX, Fu Y, Li J, Kaliginedi V, Decurtins S, Wandlowski T. J Am Chem Soc, 2012, 134: 19425–19431

    CAS  PubMed  Google Scholar 

  72. Huang C, Chen S, Baruël Ørnsø K, Reber D, Baghernejad M, Fu Y, Wandlowski T, Decurtins S, Hong W, Thygesen KS, Liu SX. Angew Chem Int Ed, 2015, 54: 14304–14307

    CAS  Google Scholar 

  73. Hines T, Díez-Pérez I, Nakamura H, Shimazaki T, Asai Y, Tao N. J Am Chem Soc, 2013, 135: 3319–3322

    CAS  PubMed  Google Scholar 

  74. Zang Y, Pinkard A, Liu ZF, Neaton JB, Steigerwald ML, Roy X, Venkataraman L. J Am Chem Soc, 2017, 139: 14845–14848

    CAS  PubMed  Google Scholar 

  75. Doud EA, Inkpen MS, Lovat G, Montes E, Paley DW, Steigerwald ML, Vázquez H, Venkataraman L, Roy X. J Am Chem Soc, 2018, 140: 8944–8949

    CAS  PubMed  Google Scholar 

  76. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ. J Am Chem Soc, 2003, 125: 15294–15295

    CAS  PubMed  Google Scholar 

  77. Nichols RJ, Higgins SJ. Acc Chem Res, 2016, 49: 2640–2648

    CAS  PubMed  Google Scholar 

  78. Haiss W, Albrecht T, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ, Kuznetsov AM, Zhang J, Chi Q, Ulstrup J. J Phys Chem B, 2007, 111: 6703–6712

    CAS  PubMed  Google Scholar 

  79. **ao X, Brune D, He J, Lindsay S, Gorman CB, Tao N. Chem Phys, 2006, 326: 138–143

    CAS  Google Scholar 

  80. Zhou XS, Liu L, Fortgang P, Lefevre AS, Serra-Muns A, Raouafi N, Amatore C, Mao BW, Maisonhaute E, Schollhorn B. J Am Chem Soc, 2011, 133: 7509–7516

    CAS  PubMed  Google Scholar 

  81. Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J. J Am Chem Soc, 2006, 128: 17132–17138

    CAS  PubMed  Google Scholar 

  82. Ricci AM, Calvo EJ, Martin S, Nichols RJ. J Am Chem Soc, 2010, 132: 2494–2495

    CAS  PubMed  Google Scholar 

  83. Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ, Nygaard S, Jeppesen JO, Ulstrup J. J Am Chem Soc, 2008, 130: 12204–12205

    CAS  PubMed  Google Scholar 

  84. Liao J, Agustsson JS, Wu S, Schonenberger C, Calame M, Leroux Y, Mayor M, Jeannin O, Ran YF, Liu SX, Decurtins S. Nano Lett, 2010, 10: 759–764

    CAS  PubMed  Google Scholar 

  85. Baghernejad M, Zhao X, Baruël Ørnsø K, Füeg M, Moreno-García P, Rudnev AV, Kaliginedi V, Vesztergom S, Huang C, Hong W, Broekmann P, Wandlowski T, Thygesen KS, Bryce MR. J Am Chem Soc, 2014, 136: 17922–17925

    CAS  PubMed  Google Scholar 

  86. Pia EAD, Chi Q, Jones DD, Macdonald JE, Ulstrup J, Elliott M. Nano Lett, 2011, 11: 176–182

    PubMed  Google Scholar 

  87. Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ. J Am Chem Soc, 2012, 134: 16817–16826

    CAS  PubMed  Google Scholar 

  88. Paquette MM, Plaul D, Kurimoto A, Patrick BO, Frank NL. J Am Chem Soc, 2018, 140: 14990–15000

    CAS  PubMed  Google Scholar 

  89. Li J, Zhao Z, Yu C, Wang H, Zhao J. J Comput Chem, 2012, 33: 666–672

    CAS  PubMed  Google Scholar 

  90. Darwish N, Díez-Pérez I, Da Silva P, Tao N, Gooding JJ, Paddon-Row MN. Angew Chem Int Ed, 2012, 51: 3203–3206

    CAS  Google Scholar 

  91. **ang L, Palma JL, Li Y, Mujica V, Ratner MA, Tao N. Nat Commun, 2017, 8: 14471

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Wang H, Wang Z, Qiao Y, Ulstrup J, Chen HY, Zhou G, Tao N. Proc Natl Acad Sci USA, 2019, 116: 3407–3412

    CAS  PubMed  Google Scholar 

  93. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J. Chem Rev, 2008, 108: 2737–2791

    CAS  PubMed  Google Scholar 

  94. Capozzi B, Chen Q, Darancet P, Kotiuga M, Buzzeo M, Neaton JB, Nuckolls C, Venkataraman L. Nano Lett, 2014, 14: 1400–1404

    CAS  PubMed  Google Scholar 

  95. Li Y, Buerkle M, Li G, Rostamian A, Wang H, Wang Z, Bowler DR, Miyazaki T, **ang L, Asai Y, Zhou G, Tao N. Nat Mater, 2019, 18: 357–363

    CAS  PubMed  Google Scholar 

  96. Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Mészáros G, Chen W, Lambert C, Hong W. Nat Mater, 2019, 18: 364–369

    CAS  PubMed  Google Scholar 

  97. Huang B, Liu X, Yuan Y, Hong ZW, Zheng JF, Pei LQ, Shao Y, Li JF, Zhou XS, Chen JZ, ** S, Mao BW. J Am Chem Soc, 2018, 140: 17685–17690

    CAS  PubMed  Google Scholar 

  98. Zhao Z, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C, Ni L, Chen X, Wang M, Li Z, Lee T, **ang D. Small, 2018, 14: 1703815

    Google Scholar 

  99. Zheng J, Liu J, Zhuo Y, Li R, ** X, Yang Y, Chen ZB, Shi J, **ao Z, Hong W, Tian ZQ. Chem Sci, 2018, 9: 5033–5038

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities in China (**amen University: 20720170035), the National Natural Science Foundation of China (21503179, 61573295, 21722305), and the Nation Key R&D Program of China (2017YFA0204902). The authors thank Dr. Shu Hu and Dr. Chao Zhan for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zeng, BF., Zhao, SQ. et al. Application of electrochemistry to single-molecule junctions: from construction to modulation. Sci. China Chem. 62, 1333–1345 (2019). https://doi.org/10.1007/s11426-019-9523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9523-x

Keywords

Navigation