Log in

Protein self-assembly: technology and strategy

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Proteins, as the premier building blocks in nature, exhibit extraordinary ability in life activities during which process proteins mostly self-assemble into large complexes to exert prominent functions. Inspired by this, recent chemical and biological studies mainly focus on supramolecular self-assembly of proteins into high ordered architectures, especially the assembly strategy to unravel the formation and function of protein nanostructures. In this review, we summarize the progress made in the engineering of supramolecular protein architectures according to the strategies used to control the orientation and the order of the assembly process. Furthermore, potential applications in biomedical areas of the supramolecular protein nanostructures will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jie KC, Zhou YJ, Yao Y, Huang FH. Chem Soc Rev, 2015, 44: 3568–3587

    Article  CAS  Google Scholar 

  2. Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinovic J. Chem Soc Rev, 2016, 45: 24–39

    Article  CAS  Google Scholar 

  3. Salgado EN, Radford RJ, Tezcan FA. Acc Chem Res, 2010, 43: 661–672

    Article  CAS  Google Scholar 

  4. Yeates TO, Padilla JE. Curr Opin Struct Biol, 2002, 12: 464–470

    Article  CAS  Google Scholar 

  5. King NP, Lai YT. Curr Opin Struct Biol, 2013, 23: 632–638

    Article  CAS  Google Scholar 

  6. Zhang J, Zheng F, Grigoryan G. Curr Opin Struct Biol, 2014, 27: 79–86

    Article  CAS  Google Scholar 

  7. Fegan A, White B, Carlson JCT, Wagner CR. Chem Rev, 2010, 110: 3315–3336

    Article  CAS  Google Scholar 

  8. Luo Q, Dong ZY, Hou CX, Liu JQ. Chem Commun, 2014, 50: 9997–10007

    Article  CAS  Google Scholar 

  9. Bai YS, Luo Q, Liu JQ. Chem Soc Rev, 2016, doi: 10.1039/C6CS00004E

    Google Scholar 

  10. Oohora K, Onoda A, Hayashi T. Chem Commun, 2012, 48: 11714–11726

    Article  CAS  Google Scholar 

  11. Oohora K, Hayashi T. Curr Opin Chem Biol, 2014, 19: 154–161

    Article  CAS  Google Scholar 

  12. Maeda Y, Matsui H. Soft Matter, 2012, 8: 7533–7544

    Article  CAS  Google Scholar 

  13. Carlson JCT, Jena SS, Flenniken M, Chou T, Siegel RA, Wagner CR. J Am Chem Soc, 2006, 128: 7630–7638

    Article  CAS  Google Scholar 

  14. Sakai F, Yang G, Weiss MS, Liu YJ, Chen GS, Jiang M. Nat Commun, 2014, 5: 4634

    Article  CAS  Google Scholar 

  15. Yang G, Zhang X, Kochovski Z, Zhang YF, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li XM, Liu C, Chen GS, Jiang M. J Am Chem Soc, 2016, 138: 1932–1937

    Article  CAS  Google Scholar 

  16. Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Nat Chem, 2013, 5: 613–620

    Article  CAS  Google Scholar 

  17. Li Q, So CR, Fegan A, Cody V, Sarikaya M, Vallera DA, Wagner CR. J Am Chem Soc, 2010, 132: 17247–17257

    Article  CAS  Google Scholar 

  18. Suci PA, Kang S, Young M, Douglas T. J Am Chem Soc, 2009, 131: 9164–9165

    Article  CAS  Google Scholar 

  19. Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew Chem Int Ed, 2009, 48: 1271–1274

    Article  CAS  Google Scholar 

  20. Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T. Angew Chem Int Ed, 2012, 124: 2682–2685

    Article  Google Scholar 

  21. Oohora K, Burazerovic S, Onoda A, Wilson YM, Ward TR, Hayashi T. Angew Chem Int Ed, 2012, 51: 3818–3821

    Article  CAS  Google Scholar 

  22. Pan XY, Yu SY, Yao P, Shao ZZ. J Colloid Interf Sci, 2007, 316: 405–412

    Article  CAS  Google Scholar 

  23. Kostiainen MA, Ceci P, Fornara M, Hiekkataipale P, Kasyutich O, Nolte RJM, Cornelissen JJLM, Desautels RD, van Lierop J. ACS Nano, 2011, 5: 6394–6402

    Article  CAS  Google Scholar 

  24. Kostiainen MA, Pietsch C, Hoogenboom R, Nolte RJM, Cornelissen JJLM. Adv Funct Mater, 2011, 21: 2012–2019

    Article  CAS  Google Scholar 

  25. Sun HC, Zhang XY, Miao L, Zhao LL, Luo Q, Xu JY, Liu JQ. ACS Nano, 2016, 10: 421–428

    Article  CAS  Google Scholar 

  26. Kostiainen MA, Kasyutich O, Cornelissen JJLM, Nolte RJM. Nat Chem, 2010, 2: 394–399

    Article  CAS  Google Scholar 

  27. Liljeström V, Mikkilä J, Kostiainen MA. Nat Commun, 2014, 5: 4445

    Article  Google Scholar 

  28. Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P. Nat Nanotechnol, 2013, 8: 52–56

    Article  CAS  Google Scholar 

  29. Miao L, Han JS, Zhang H, Zhao LL, Si CY, Zhang XY, Hou CX, Luo Q, Xu JY, Liu JQ. ACS Nano, 2014, 8: 3743–3751

    Article  CAS  Google Scholar 

  30. Sun HC, Miao L, Li JX, Fu S, An G, Si CY, Dong ZY, Luo Q, Yu SJ, Xu JY, Liu JQ. ACS Nano, 2015, 9: 5461–5469

    Article  CAS  Google Scholar 

  31. Munch HK, Heide ST, Christensen NJ, Hoeg-Jensen T, Thulstrup PW, Jensen KJ. Chem Eur J, 2011, 17: 7198–7204

    Article  CAS  Google Scholar 

  32. Radford RJ, Lawrenz M, Nguyen PC, Mc Cammon JA, Tezcan FA. Chem Commun, 2011 47: 313–315

    Article  CAS  Google Scholar 

  33. Burazerovic S, Gradinaru J, Pierron J, Ward TR. Angew Chem Int Ed, 2007, 46: 5510–5514

    Article  CAS  Google Scholar 

  34. Radford RJ, Tezcan FA. J Am Chem Soc, 2009, 131: 9136–9137

    Article  CAS  Google Scholar 

  35. Salgado EN, Faraone-mennella J, Tezcan FA. J Am Chem Soc, 2007, 129: 13374–13375

    Article  CAS  Google Scholar 

  36. Salgado EN, Lewis RA, Mossin S, Rheingold L, Tezcan FA. Inorg Chem, 2009, 48: 6082–6084

    Article  Google Scholar 

  37. Salgado EN, Ambroggio XI, Brodin JD, Richard A, Kuhlman, B, Tezcan FA. Proc Natl Acad Sci USA, 2010, 107: 1827–1832

    Article  CAS  Google Scholar 

  38. Brodin JD, Medina-Morales A, Ni T, Salgado EN, Ambroggio XI, Tezcan FA. J Am Chem Soc, 2010, 132: 8610–8617

    Article  CAS  Google Scholar 

  39. Brodin JD, Smith SJ, Carr JR, Tezcan FA. J Am Chem Soc, 2015, 137: 10468–10471

    Article  CAS  Google Scholar 

  40. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA. Nat Chem, 2012, 4: 375–382

    Article  CAS  Google Scholar 

  41. Brodin JD, Carr JR, Sontz PA, Tezcan FA. Proc Natl Acad Sci USA, 2014, 111: 2897–2902

    Article  CAS  Google Scholar 

  42. Zhang W, Luo Q, Miao L, Hou CX, Bai YS, Dong ZY, Xu JY, Liu JQ. Nanoscale, 2012, 4: 5847–5851

    Article  CAS  Google Scholar 

  43. Bai YS, Luo Q, Zhang W, Miao L, Xu JY, Li HB, Liu JQ. J Am Chem Soc, 2013, 135:10966–10969

    Article  CAS  Google Scholar 

  44. Sontz PA, Bailey JB, Ahn S, Tezcan FA. J Am Chem Soc, 2015, 137: 11598–11601

    Article  CAS  Google Scholar 

  45. Zhang L, Wu YW, Brunsveld L. Angew Chem Int Ed, 2007, 46: 1798–1802

    Article  CAS  Google Scholar 

  46. Dang DT, Nguyen HD, Merkx M, Brunsveld L. Angew Chem Int Ed, 2013, 52: 2915–2919

    Article  CAS  Google Scholar 

  47. Uhlenheuer DA, Young JF, Nguyen HD, Scheepstra M, Brunsveld L. Chem Commun, 2011, 47: 6798–6800

    Article  CAS  Google Scholar 

  48. Nguyen HD, Dang DT, van Dongen JLJ, Brunsveld L. Angew Chem Int Ed, 2010, 122: 907–910

    Article  Google Scholar 

  49. Uhlenheuer DA, Wasserberg D, Nguyen H, Zhang L, Blum C, Subramaniam V, Brunsveld L. Chem Eur J, 2009, 15: 8779–8790

    Article  CAS  Google Scholar 

  50. Dang DT, Schill J, Brunsveld L. Chem Sci, 2012, 3: 2679–2684

    Article  CAS  Google Scholar 

  51. Hou CX, Li JX, Zhao LL, Zhang W, Luo Q, Dong ZY, Xu JY, Liu JQ. Angew Chem Int Ed, 2013, 125: 5700–5703

    Article  Google Scholar 

  52. Si CY, Li JX, Luo Q, Hou CX, Pan TZ, Li HB, Liu JQ. Chem Commun, 2016, 52: 2924–2927

    Article  CAS  Google Scholar 

  53. Padilla JE, Colovos C, Yeates TO. Proc Natl Acad Sci USA, 2001, 98: 2217–2221

    Article  CAS  Google Scholar 

  54. Lai YT, Cascio D, Yeates TO. Science, 2012, 336: 1129

    Article  CAS  Google Scholar 

  55. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO. Nat Chem, 2014, 6: 1065–1071

    Article  CAS  Google Scholar 

  56. Usui K, Maki T, Ito F, Suenaga A, Kidoaki S, Itoh M, Taiji M, Matsuda T, Hayashizaki Y, Suzuki H. Protein Sci, 2009, 18: 960–969

    Article  CAS  Google Scholar 

  57. Gao X, Yang S, Zhao CC, Ren YH, Wei DZ. Angew Chem Int Ed, 2014, 53: 14027–14030

    Article  CAS  Google Scholar 

  58. Gonen S, Di Maio F, Gonen T, Baker D. Science, 2015, 348: 1365–1368

    Article  CAS  Google Scholar 

  59. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D. Science, 2012, 336: 1171–1174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqiu Liu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Qiao, S. & Liu, J. Protein self-assembly: technology and strategy. Sci. China Chem. 59, 1531–1540 (2016). https://doi.org/10.1007/s11426-016-0231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0231-3

Keywords

Navigation