Log in

Higher order Poisson kernels and Lp polyharmonic boundary value problems in Lipschitz domains

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems (i.e., Dirichlet, Neumann and regularity problems) with Lp boundary data for polyharmonic equations in Lipschitz domains and give integral representation (or potential) solutions of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G E, Askey R, Roy R. Special Functions. Cambridge: Cambridge University Press, 1999

    MATH  Google Scholar 

  2. Barton A, Hofmann S, Mayboroda S. Square function estimates on layer potentials for higher-order elliptic equations. Math Nachr, 2017, 290: 2459–2511

    MathSciNet  MATH  Google Scholar 

  3. Barton A, Hofmann S, Mayboroda S. The Neumann problem for higher order elliptic equations with symmetric coefficients. Math Ann, 2018, 371: 297–336

    MathSciNet  MATH  Google Scholar 

  4. Begehr H, Du J, Wang Y. A Dirichlet problem for polyharmonic functions. Ann Mat Pura Appl (4), 2008, 187: 435–457

    MathSciNet  MATH  Google Scholar 

  5. Begehr H, Du Z, Wang N. Dirichlet problems for inhomogeneous complex mixed-partial differential equations of higher order in the unit disc: New view. Oper Theory Adv Appl, 2009, 205: 101–128

    MathSciNet  MATH  Google Scholar 

  6. Begehr H, Gaertner E. A Dirichlet problem for the inhomogeneous polyharmonic equations in the upper half plane. Georgian Math J, 2007, 14: 33–52

    MathSciNet  MATH  Google Scholar 

  7. Begehr H, Schmersau D. The Schwarz problem for polyanalytic functions. Z Anal Anwend, 2005, 24: 341–351

    MathSciNet  MATH  Google Scholar 

  8. Calderón A. Cauchy integrals on Lipschitz curves and related operators. Proc Natl Acad Sci USA, 1977, 74: 1324–1327

    MathSciNet  MATH  Google Scholar 

  9. Coifman R, Mcintosh A, Meyer Y. L’integrale de Cauchy definite un operateur borne sur L2 pour les courbes lipschitziennes. Ann of Math (2), 1982, 116: 361–387

    MathSciNet  MATH  Google Scholar 

  10. Dahlberg B. Estimates of harmonic measure. Arch Ration Mech Anal, 1977, 65: 275–288

    MathSciNet  MATH  Google Scholar 

  11. Dahlberg B. On the Poisson integral for Lipschitz and C1 domains. Studia Math, 1979, 66: 13–24

    MathSciNet  MATH  Google Scholar 

  12. Dahlberg B. Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain. Studia Math, 1980, 67: 297–314

    MathSciNet  MATH  Google Scholar 

  13. Dahlberg B, Kenig C. Harmonic Analysis and Partial Differential Equations. Göteborg: University of Göteborg, 1985

    Google Scholar 

  14. Dahlberg B, Kenig C. Hardy spaces and the Neumann problem in Lp for Laplace’s equation in Lipschitz domains. Ann of Math (2), 1987, 125: 437–465

    MathSciNet  MATH  Google Scholar 

  15. Dahlberg B, Kenig C, Pipher J, et al. Area integral estimates for higher order elliptic equations and systems. Ann inst Fourier (Grenoble), 1997, 47: 1425–1461

    MathSciNet  MATH  Google Scholar 

  16. Dahlberg B, Kenig C, Verchota G. The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Ann inst Fourier (Grenoble), 1986, 36: 109–135

    MathSciNet  MATH  Google Scholar 

  17. Dindos M. Hardy Spaces and Potential Theory on C1 Domains in Riemannian Manifolds. Memoirs of the American Mathematical Society. Providence: Amer Math Soc, 2008

    Google Scholar 

  18. Du J, Wang Y. On boundary value problems of polyanalytic functions on the real axis. Complex Var Theory Appl, 2003, 48: 527–542

    MathSciNet  MATH  Google Scholar 

  19. Du Z. Boundary value problems for higher order complex differential equations. Doctoral Dissertation. Berlin: Freie Universität Berlin, 2008

    MATH  Google Scholar 

  20. Du Z, Guo G, Wang N. Decompositions of functions and Dirichlet problems in the unit disc. J Math Anal Appl, 2010, 362: 1–16

    MathSciNet  MATH  Google Scholar 

  21. Du Z, Kou K, Wang J. Lp polyharmonic Dirichlet problems in regular domains I: The unit disc. Complex Var Elliptic Equ, 2013, 58: 1387–1405

    MathSciNet  MATH  Google Scholar 

  22. Du Z, Qian T, Wang J. Lp polyharmonic Dirichlet problems in regular domains II: The upper-half plane. J Differential Equations, 2012, 252: 1789–1812

    MathSciNet  MATH  Google Scholar 

  23. Du Z, Qian T, Wang J. Lp polyharmonic Dirichlet problems in regular domains IV: The upper-half space. J Differential Equations, 2013, 255: 779–795

    MathSciNet  MATH  Google Scholar 

  24. Du Z, Qian T, Wang J. Lp polyharmonic Dirichlet problems in regular domains III: The unit ball. Complex Var Elliptic Equ, 2014, 59: 947–965

    MathSciNet  MATH  Google Scholar 

  25. Fabes E, Jodeit Jr M, Riviere N. Potential techniques for boundary value problems on C1 domains. Acta Math, 1978, 141: 165–186

    MathSciNet  MATH  Google Scholar 

  26. Folland G. Introduction to Partial Differential Equations. Princeton: Princeton University Press, 1995

    MATH  Google Scholar 

  27. Gaertner E. Basic complex boundary value problems in the upper half plane. Doctoral Dissertation. Berlin: Freie Universitäat Berlin, 2006

    Google Scholar 

  28. Grafakos L. Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Berlin: Springer, 2009

    Google Scholar 

  29. Helms L. Potential Theory. London: Springer, 2009

    MATH  Google Scholar 

  30. Jerison D, Kenig C. An identity with applications to harmonic measure. Bull Amer Math Soc, 1980, 2: 447–451

    MathSciNet  MATH  Google Scholar 

  31. Jerison D, Kenig C. The Dirichlet problem in non-smooth domains. Ann of Math (2), 1981, 113: 367–382

    MathSciNet  MATH  Google Scholar 

  32. Jerison J, Kenig C. The Neumann problem in Lipschitz domains. Bull Amer Math Soc, 1981, 4: 203–207

    MathSciNet  MATH  Google Scholar 

  33. Kenig C. Harmonic Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, No. 83. Providence: Amer Math Soc, 1994

    MATH  Google Scholar 

  34. Lanzani L, Capogna L, Brown R. The mixed problem in Lp for some two-dimensional Lipschitz domains. Math Ann, 2008, 342: 91–124

    MathSciNet  MATH  Google Scholar 

  35. Lanzani L, Shen Z. On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Comm Partial Differential Equations, 2004, 29: 91–109

    MathSciNet  MATH  Google Scholar 

  36. Mayboroda S, Maz’ya V. Boundedness of the gradient of a solution and Wiener test of order one for the biharmonic equation. Invent Math, 2009, 175: 287–334

    MathSciNet  MATH  Google Scholar 

  37. Maz’ya V, Rossmann J. Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162. Providence: Amer Math Soc, 2010

    Google Scholar 

  38. Mitrea I, Mitrea M. Multi-Layer Potentials and Boundary Problems. Lecture Notes in Mathematics, vol. 2063. Berlin: Springer, 2013

    MATH  Google Scholar 

  39. Mitrea M, Taylor M. Boundary layer methods for Lipschitz domains in Riemannian manifolds. J Funct Anal, 1999, 163: 181–251

    MathSciNet  MATH  Google Scholar 

  40. Mitrea M, Taylor M. Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J Funct Anal, 2000, 176: 1–79

    MathSciNet  MATH  Google Scholar 

  41. Mitrea M, Taylor M. Potential theory on Lipschitz domains in Riemannian manifolds: Lp, Hardy and Höolder type results. Comm Anal Geom, 2001, 9: 369–421

    MathSciNet  MATH  Google Scholar 

  42. Nečas J. Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Berlin: Springer, 2012

    Google Scholar 

  43. Ott K, Brown R. The mixed problem for the Laplacian in Lipschitz domains. Potential Anal, 2013, 38: 1333–1364

    MathSciNet  MATH  Google Scholar 

  44. Pipher J, Verchota G. Area integral estimates for the biharmonic operator in Lipschitz domains. Trans Amer Math Soc, 1991, 327: 903–917

    MathSciNet  MATH  Google Scholar 

  45. Pipher J, Verchota G. The Dirichlet problem in Lp for the biharmonic equation on Lipschitz domains. Amer J Math, 1992, 114: 923–972

    MathSciNet  MATH  Google Scholar 

  46. Pipher J, Verchota G. A maximum principle for the biharmonic equation in Lipschitz and C1 domains. Comment Math Helv, 1993, 68: 385–414

    MathSciNet  MATH  Google Scholar 

  47. Pipher J, Verchota G. Dilation invariant estimates and the boundary Garding inequality for higher order elliptic operators. Ann of Math (2), 1995, 142: 1–38

    MathSciNet  MATH  Google Scholar 

  48. Rellich F. Darstellung der Eigenwerte von Δu + λu durch ein Randintegral. Math Z, 1940, 46: 635–646

    MathSciNet  MATH  Google Scholar 

  49. Shen Z. The Lp Dirichlet problem for elliptic systems on Lipschitz domains. Math Res Lett, 2006, 13: 143–159

    MathSciNet  MATH  Google Scholar 

  50. Stein E. Harmonic Analysis, Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton University Press, 1993

    MATH  Google Scholar 

  51. Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press, 1971

    MATH  Google Scholar 

  52. Szegö G. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23. Providence: Amer Math Soc, 1975

    Google Scholar 

  53. Verchota G. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal, 1984, 59: 572–611

    MathSciNet  MATH  Google Scholar 

  54. Verchota G. The Dirichlet problem for the biharmonic equation in C1 domains. Indiana Univ Math J, 1987, 36: 867–895

    MathSciNet  MATH  Google Scholar 

  55. Verchota G. The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ Math J, 1990, 39: 671–702

    MathSciNet  MATH  Google Scholar 

  56. Verchota G. The biharmonic Neumann problem in Lipschitz domains. Acta Math, 2005, 194: 217–279

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11401254). The author greatly expresses his gratitude to the referees for their careful reading, questions and suggestion, which are helpful to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Higher order Poisson kernels and Lp polyharmonic boundary value problems in Lipschitz domains. Sci. China Math. 63, 1065–1106 (2020). https://doi.org/10.1007/s11425-018-9383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-018-9383-0

Keywords

MSC(2010)

Navigation