Log in

On the Dirichlet form of three-dimensional Brownian motion conditioned to hit the origin

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Our concern in this paper is the energy form induced by an eigenfunction of a self-adjoint extension of the restriction of the Laplace operator to \(C_c^\infty ({\mathbb{R}^3}\backslash \{ 0\} )\)). We will prove that this energy form is a regular Dirichlet form with core \(C_c^\infty ({\mathbb{R}^3})\). The associated diffusion X behaves like a 3-dimensional Brownian motion with a mild radial drift when far from 0, subject to an ever-stronger push toward 0 near that point. In particular, {0} is not a polar set with respect to X. The diffusion X is rotation invariant, and admits a skew-product representation before hitting {0}: its radial part is a diffusion on (0, ∞) and its angular part is a time-changed Brownian motion on the sphere S2. The radial part of X is a “reflected” extension of the radial part of X0 (the part process of X before hitting {0}). Moreover, X is the unique reflecting extension of X0, but X is not a semi-martingale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S, Gesztesy F, Høegh-Krohn R, et al. Solvable Models in Quantum Mechanics. New York: Springer-Verlag, 1988

    Book  MATH  Google Scholar 

  2. Albeverio S, Gesztesy F, Karwowski W, et al. On the connection between Schrödinger and Dirichlet forms. J Math Phys, 1985, 26: 2546–2553

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio S, Høegh-Krohn R, Streit L. Energy forms, Hamiltonians, and distorted Brownian paths. J Math Phys, 1977, 18: 907–917

    Article  MathSciNet  MATH  Google Scholar 

  4. Albeverio S, Kusuoka S, Streit L. Convergence of Dirichlet forms and associated Schröedinger operators. J Funct Anal, 1986, 68: 130–148

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Z Q. On reflected Dirichlet spaces. Probab Theory Related Fields, 1992, 94: 135–162

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen Z Q, Fukushima M. Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton: Princeton University Press, 2011

    Book  MATH  Google Scholar 

  7. Chen Z Q, Fukushima M. One-point reflection. Stochastic Process Appl, 2015, 125: 1368–1393

    Article  MathSciNet  MATH  Google Scholar 

  8. Cranston M, Koralov L, Molchanov S, et al. Continuous model for homopolymers. J Funct Anal, 2009, 256: 2656–2696

    Article  MathSciNet  MATH  Google Scholar 

  9. Cranston M, Koralov L, Molchanov S, et al. A solvable model for homopolymers and self-similarity near the critical point. Random Oper Stoch Equ, 2010, 18: 73–95

    Article  MathSciNet  MATH  Google Scholar 

  10. Erickson K B. Continuous extensions of skew product diffusions. Probab Theory Related Fields, 1990, 85: 73–89

    Article  MathSciNet  MATH  Google Scholar 

  11. Fitzsimmons P J. On the quasi-regularity of semi-Dirichlet forms. Potential Anal, 2001, 15: 151–185

    Article  MathSciNet  MATH  Google Scholar 

  12. Fitzsimmons P J, Li L. On Fukushima’s decompositions of symmetric diffusions. In preparation, 2014

  13. Fukushima M. Energy forms and diffusion processes. In: Mathematics Physics, vol. 1. Singapore: World Scientific, 1985, 65–97

    Google Scholar 

  14. Fukushima M. From one dimensional diffusions to symmetric Markov processes. Stochastic Process Appl, 2010, 120: 590–604

    Article  MathSciNet  MATH  Google Scholar 

  15. Fukushima M, Oshima Y. On the skew product of symmetric diffusion processes. Forum Math, 1989, 1: 103–142

    Article  MathSciNet  MATH  Google Scholar 

  16. Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes, 2nd ed. Berlin: de Gruyter, 2011

    MATH  Google Scholar 

  17. Fukushima M, Tanaka H. Poisson point processes attached to symmetric diffusions. Ann Inst H Poincare Probab Statist, 2005, 41: 419–459

    Article  MathSciNet  MATH  Google Scholar 

  18. Getoor R. Excessive Measures. Boston: Birkhöauser, 1990

    Book  MATH  Google Scholar 

  19. Itô K. Poisson point processes attached to Markov processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. 3. Berkeley: University California Press, 1972, 225–239

    Google Scholar 

  20. Lin P. Non-Friedrichs self-adjoint extensions of the Laplacian in R d. Ar**v:1103.6089, 2011

  21. Meyer P-A. Une remarque sur la topologie fine. In: Séminaire de Probabilités XIX. Lecture Notes in Mathematics, vol. 1123. Berlin-Heidelberg: Springer, 1985, 176

    Google Scholar 

  22. Mijatovic A, Urusov M. Convergence of integral functionals of one-dimensional diffusions. Electron Comm Probab, 2012, 17: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  23. Pardoux E, Williams R J. Symmetric reflected diffusions. Ann Inst H Poincaré Probab Statist, 1994, 30: 13–62

    MathSciNet  MATH  Google Scholar 

  24. Röockner M, Zhang T-S. Uniqueness of generalized Schröoedinger operators and applications. J Funct Anal, 1992, 105: 187–231

    Article  MathSciNet  Google Scholar 

  25. Röockner M, Zhang T-S. Uniqueness of generalized Schröoedinger operators, II. J Funct Anal, 1994, 119: 455–467

    Article  MathSciNet  Google Scholar 

  26. Salisbury T S. On the Itô excursion process. Probab Theory Related Fields, 1986, 73: 319–350

    Article  MathSciNet  MATH  Google Scholar 

  27. Salisbury T S. Construction of right processes from excursions. Probab Theory Related Fields, 1986, 73: 351–367

    Article  MathSciNet  MATH  Google Scholar 

  28. Streit L. Energy forms: Schroedinger theory, processes. Phys Rep, 1981, 77: 363–375

    Article  MathSciNet  Google Scholar 

  29. Ying J. Remarks on h-transform and drift. Chinese Ann Math Ser B, 1998, 19: 473–478

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by National Natural Science Foundation of China (Grant Nos. 11688101 and 11801546) and Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (Grant No. 2008DP173182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Fitzsimmons.

Additional information

In Memory of Professor Kai Lai Chung on the 100th Anniversary of His Birth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzsimmons, P.J., Li, L. On the Dirichlet form of three-dimensional Brownian motion conditioned to hit the origin. Sci. China Math. 62, 1477–1492 (2019). https://doi.org/10.1007/s11425-017-9400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9400-8

Keywords

MSC(2010)

Navigation