Log in

Stability of the rarefaction wave for a two-fluid plasma model with diffusion

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption

$\frac{{\theta _{i, + } }} {{\theta _{e, + } }} = \frac{{\theta _{i, - } }} {{\theta _{e, - } }} \geqslant \frac{{m_i }} {{2m_e }}, $

, namely, the ratio of the thermal speeds of ions and electrons at both far fields is not less than one half. Meanwhile, we obtain the global existence of solutions based on energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen F. Introduction to Plasma Physics and Controlled Fusion. 2nd ed. New York: Plenum Press, 1984

    Book  Google Scholar 

  2. Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003; 61: 345–361

    MathSciNet  MATH  Google Scholar 

  3. Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008; 21: 135–148

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan R J, Liu S Q. Global stability of rarefaction waves of the Navier-Stokes-Poisson system. J Differential Equations, 2015; 258: 2495–2530

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan R J, Liu S Q. Global stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system. Ar**v:1405.2522, 2014

    Google Scholar 

  6. Duan R J, Yang X F. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Commun Pure Appl Anal, 2013; 12: 985–1014.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ducomet B. A remark about global existence for the Navier-Stokes-Poisson system. Appl Math Lett, 1999; 12: 31–37

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo Y, Pausader B. Global smooth ion dynamics in the Euler-Poisson system. Comm Math Phys, 2011; 303: 89–125

    Article  MathSciNet  MATH  Google Scholar 

  9. Ju Q C, Li F C, Li H L. quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differential Equations, 2009; 247: 203–224

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawashima S, Matsumura A, Nishihara K. Asymptotic behaviour of solutions for the equations of a viscous heatconductive gas. Proc Japan Acad Ser A, 1986; 62: 249–252

    Article  MathSciNet  MATH  Google Scholar 

  11. Li H L, Matsumura A, Zhang G J. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Ration Mech Anal, 2010; 196: 681–713

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin Y Q, Hao C C, Li H L. Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations. Acta Math Sin Engl Ser, 2012; 28: 925–940

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu J, Lian R X, Qian M F. Global existence of solution to a bipolar Navier-Stokes-Poisson system (in Chinese). Acta Math Sci Ser A Chin Ed, 2014; 34: 960–976

    MathSciNet  Google Scholar 

  14. Liu S Q, Yin H Y, Zhu C J. Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary. Ar**v:1508.01405, 2015

    Google Scholar 

  15. Liu T P, **n Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988; 118: 451–465

    Article  MathSciNet  MATH  Google Scholar 

  16. Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations. New York: Springer, 1990

    Book  MATH  Google Scholar 

  17. Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986; 3: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  18. Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992; 144: 325–335

    Article  MathSciNet  MATH  Google Scholar 

  19. Smoller J. Shock Waves and Reaction-Diffusion Equations. New York-Berlin: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  20. Tan Z, Yang T, Zhao H J, et al. Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data. SIAM J Math Anal, 2013; 45: 547–571

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2006; 31: 571–591

    Article  MathSciNet  MATH  Google Scholar 

  22. Yin H Y, Zhang J S, Zhu C J. Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system. Ar**v:1508.01411, 2015

    Google Scholar 

  23. Zhang G J, Li H L, Zhu C J. Optimal decay rate of the non-isentropic compressible Navier- Stokes-Poisson system in R3. J Differential Equations, 2011; 250: 866–891

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Y H, Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007; 30: 305–329

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou F, Li Y P. Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line. Bound Value Probl, 2013, 124: 22pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangJiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Liu, S., Yin, H. et al. Stability of the rarefaction wave for a two-fluid plasma model with diffusion. Sci. China Math. 59, 67–84 (2016). https://doi.org/10.1007/s11425-015-5059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5059-4

Keywords

MSC(2010)

Navigation