Log in

Stability of the Rarefaction Wave for a Non-isentropic Navier-Stokes/Allen-Cahn System

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper is concerned with the large time behavior of solutions to the Cauchy problem for a one-dimensional compressible non-isentropic Navier-Stokes/Allen-Cahn system which is a combination of the classical Navier-Stokes system with an Allen-Cahn phase field description. Motivated by the relationship between Navier-Stokes/Allen-Cahn and Navier-Stokes, the author can prove that the solutions to the one dimensional compressible non-isentropic Navier-Stokes/Allen-Cahn system tend time-asymptotically to the rarefaction wave, where the strength of the rarefaction wave is not required to be small. The proof is mainly based on a basic energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blesgen, T., A generalization of the Navier-Stokes equations to two-phase flows, J. Phys. D: Appl. Phys., 32, 1999, 1119–1123.

    Article  Google Scholar 

  2. Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. & Fluids, 31, 2002, 41–68.

    Article  Google Scholar 

  3. Chen, M. T. and Guo, X. W., Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum, Nonlinear Anal. Real World Appl., 37, 2017, 350–373.

    Article  MathSciNet  Google Scholar 

  4. Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Springer-Verlag, Berlin, 2010, xxxvi+708 pp.

    Book  Google Scholar 

  5. Ding, S. J., Li, Y. H. and Luo, W. L., Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D, J. Math. Fluid Mech., 15, 2013, 335–360.

    Article  MathSciNet  Google Scholar 

  6. Evje, S. and Wen, H. Y., On the large time behavior of the compressible gas-liquid drift-flux model with slip, Math. Models Methods Appl. Sci., 25, 2015, 2175–2215.

    Article  MathSciNet  Google Scholar 

  7. Evje, S. and Wen, H. Y., Global solutions of a viscous gas-liquid model with unequal fluid velocities in a closed conduit, SIAM J. Math. Anal., 47, 2015, 381–406.

    Article  MathSciNet  Google Scholar 

  8. Evje, S. and Wen, H. Y., Weak solutions of a two-phase Navier-Stokes model with a general slip law, J. Funct. Anal., 268, 2015, 93–139.

    Article  MathSciNet  Google Scholar 

  9. Feireisl, E., Petzeltová, H., Rocca, E. and Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci., 20, 2010, 1129–1160.

    Article  MathSciNet  Google Scholar 

  10. Freistühler, H. and Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Rational Mech. Anal., 224, 2017, 1–20.

    Article  MathSciNet  Google Scholar 

  11. Gal, C. G. and Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 2010, 401–436.

    Article  MathSciNet  Google Scholar 

  12. Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal., 95, 1986, 325–344.

    Article  MathSciNet  Google Scholar 

  13. Huang, F. M., Li, J. and Matsumura, A., Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 197, 2010, 89–116.

    Article  MathSciNet  Google Scholar 

  14. Huang, F. M., Matsumura, A. and **n, Z. P., Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179, 2006, 55–77.

    Article  MathSciNet  Google Scholar 

  15. Huang, F. M., **n, Z. P. and Yang, T., Contact discontinuity with general perturbations for gas motions, Adv. Math., 219, 2008, 1246–1297.

    Article  MathSciNet  Google Scholar 

  16. Kotschote, M., Strong solutions of the Navier-Stokes equations for a compresible fluid of Allen-Cahn type, Arch. Ration. Mech. Anal., 206, 2012, 489–514.

    Article  MathSciNet  Google Scholar 

  17. Kotschote, M., Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type, J. Eυol Equ., 17, 2017, 359–385.

    Article  MathSciNet  Google Scholar 

  18. Liu, T. P., Shock waves for compressible Navier-Stokes equations are stable, Comm. Pure Appl. Math., 39, 1986, 565–594.

    Article  MathSciNet  Google Scholar 

  19. Liu, T. P. and **n, Z. P., Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118, 1988, 451–465.

    Article  MathSciNet  Google Scholar 

  20. Liu, W. Y., Bertozzi, A. and Kolokolnikov, T., Diffuse interface surface tension models in an expanding flow, Commun. Math. Sci., 10, 2012, 387–418.

    Article  MathSciNet  Google Scholar 

  21. Luo, T., Yin, H. Y. and Zhu, C. J., Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math. Methods Appl. Sci., 41, 2018, 4724–4736.

    Article  MathSciNet  Google Scholar 

  22. Luo, T., Yin, H. Y. and Zhu, C. J., Stability of composite wave for compressible Navier-Stokes/Allen-Cahn system, Math. Models Methods Appl. Sci., 30, 2019, 343–385.

    Article  MathSciNet  Google Scholar 

  23. Matsumura, A. and Nishihara, K., Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3, 1986, 1–13.

    Article  MathSciNet  Google Scholar 

  24. Matsumura, A. and Nishihara, K., Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144, 1992, 325–335.

    Article  MathSciNet  Google Scholar 

  25. Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, Berlin, 1983.

    Book  Google Scholar 

  26. Xu, X., Zhao, L. Y. and Liu, C., Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations, SIAM J. Math. Anal., 41, 2009, 2246–2282.

    Article  MathSciNet  Google Scholar 

  27. Yang, X. F., Feng, J. J., Liu, C. and Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218, 2006, 417–428.

    Article  MathSciNet  Google Scholar 

  28. Zhao, L. Y., Guo, B. L. and Huang, H. Y., Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system, J. Math. Anal. Appl., 384, 2011, 232–245.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author would like to thank Professor Changjiang Zhu for his continuous help and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Luo.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 12001249), the Natural Science Foundation of Jiangxi Province of China (No. GJJ190280) and the Scientific Research Funds of Jiangxi University of Finance and Economics (No. 012270624).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T. Stability of the Rarefaction Wave for a Non-isentropic Navier-Stokes/Allen-Cahn System. Chin. Ann. Math. Ser. B 43, 233–252 (2022). https://doi.org/10.1007/s11401-022-0314-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0314-9

Keywords

2000 MR Subject Classification

Navigation