Log in

Quantification of vertical solid matter transfers in soils during pedogenesis by a multi-tracer approach

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Vertical transfer of solid matter in soils (bioturbation and translocation) is responsible for changes in soil properties over time through the redistribution of most of the soil constituents with depth. Such transfers are, however, still poorly quantified.

Materials and methods

In this study, we examine matter transfer in four eutric Luvisols through an isotopic approach based on 137Cs, 210Pb(xs), and meteoric 10Be. These isotopes differ with respect to chemical behavior, input histories, and half-lives, which allows us to explore a large time range. Their vertical distributions were modeled by a diffusion-advection equation with depth-dependent parameters. We estimated a set of advection and diffusion coefficients able to simulate all isotope depth distributions and validated the resulting model by comparing the depth distribution of organic carbon (including 12/13C and 14C isotopes) and of the 0–2-μm particles with the data.

Results and discussion

We showed that (i) the model satisfactorily reproduces the organic carbon, 13C, and 14C depth distributions, indicating that organic carbon content and age can be explained by transport without invoking depth-dependent decay rates; (ii) translocation partly explains the 0–2-μm particle accumulation in the Bt horizon; and (iii) estimates of diffusion coefficients that quantify the soil mixing rate by bioturbation are significantly higher for the studied plots than those obtained by ecological studies.

Conclusions

This study presents a model capable of satisfactorily reproducing the isotopic profiles of several tracers and simulating the distribution of organic carbon and the translocation of 0–2-μm particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahrens B, Reichstein M, Borken W, Muhr J, Trumbore SE, Wortzler T (2014) Bayesian calibration of a soil organic carbon model using ∆14C measurements of soil organic carbon and heterotrophic respiration as joint constraints. Biogeosciences 11:2147–2168

    Article  CAS  Google Scholar 

  • Al-Masri MS (2006) Vertical distribution and inventories of Cs-137 in the Syrian soils of the eastern Mediterranean region. J Environ Radioactiv 86(2):187–198

    Article  CAS  Google Scholar 

  • Antoine P, Rousseau DD, Lautridou JP, Hatté C (1999) Last interglacial-glacial climatic cycle in loess-palaeosol successions of north-western France. Boreas 28:551–563

    Article  Google Scholar 

  • Antoine P, Catt J, Lautridou JP, Somm’e J (2003) The loess and coversands of northern France and southern England. J Quaternary Sci 18(3–4):309–318

    Article  Google Scholar 

  • Balesdent J, Balabane M (1992) Maize root-derived soil organic carbon estimated by natural 13C abundance. Soil Biol Biochem 24:97–101

    Article  Google Scholar 

  • Bettis EA, Muhs DR, Roberts HM, Wintle AG (2003) Last glacial loess in the conterminous USA. Quaternary Sci Rev 22(18–19):1907–1946

    Article  Google Scholar 

  • Bockheim J, Gennadiyev A (2000) The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma 95(1–2):53–72

    Article  Google Scholar 

  • Bouché MB (1981) Contribution des lombriciens aux migrations d’éléments dans les sols tempérés. Colloques Internationaux du Centre National de la Recherche Scientifique 303:145–153

    Google Scholar 

  • Bundt M, Albrecht A, Froidevaux P, Blaser P, Flühler H (2000) Impact of preferential flow on radionuclide distribution in soil. Environ Sci Technol 34(18):3895–3899

    Article  CAS  Google Scholar 

  • Cambray RS, Playford K, Lewis G, Carpenter R (1989) Radioactive fallout in air and rain: results to the end of 1988. Environmental and Medical Sciences Division, United Kingdom Atomic Energy Authority

  • Campforts B, Vanacker V, Vanderborght J, Baken S, Smolders E, Govers G (2016) Simulating the mobility of meteoric 10Be in the landscape through acoupled soil-hillslope model (Be2D). Earth plan. Sci Lett 439:143–157

    CAS  Google Scholar 

  • Coleman K, Jenkinson D (1999) RothC-26.3. A model for the turnover of carbon in soils. Herts, Rothamsted Research, Harpenden, Hertfordshire, UK

  • Coplen T, Brand W, Gehre M, Gröning M, Meijer H, Toman B, Verkouteren R (2006) After two decades a second anchor for the VPDB δ13C scale. Rapid Communications in Mass Spectrometry: RCM 20(21):3165

    Article  CAS  Google Scholar 

  • Cottereau E, Arnold M, Moreau C, Baqué D, Bavay D, Caffy I, Comby C, Dumoulin J, Hain S, Perron M, Salomon J, Setti V (2007) Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–299

    Article  CAS  Google Scholar 

  • Cremers A, Elsen A, Depreter P, Maes A (1988) Quantitative analysis of radiocesium retention in soils. Nature 335(6187):247–249

    Article  CAS  Google Scholar 

  • Davis BAS, Brewer S, Stenvenson AC, Guiot J, Contributors D (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Sci Rev 22:1701–1716

    Article  Google Scholar 

  • Dörr H, Münnich K (1989) Downward movement of soil organic-matter and its influence on trace-element transport (Pb-210, Cs-137) in the soil. Radiocarbon 31(3):655–663, 13th International Radiocarbon conf, Dubrovnik, Yugoslavia, June 20–25, 1988

  • Finke PA (2012) Modeling the genesis of Luvisols as a function of topographic position in loess parent material. Quaternary Int 265:3–17

    Article  Google Scholar 

  • Finke PA, Hutson JL (2008) Modelling soil genesis in calcareous loess. Geoderma 145(3):462–479

    Article  CAS  Google Scholar 

  • Francey R, Allison C, Etheridge D, Trudinger C, Enting I, Leuenberger M, Langenfelds R, Michel E, Steele L (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51(2):170–193

    Article  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers

  • Graly JA, Bierman PR, Reusser LJ, Pavich MJ (2010) Meteoric Be-10 in soil profiles—a global meta-analysis. Geochim Cosmochim Acta 74(23):6814–6829

    Article  CAS  Google Scholar 

  • He Q, Walling D (1997) The distribution of fallout Cs-137 and Pb-210 in undisturbed and cultivated soils. Appl Radiat Isotopes 48(5):677–690

    Article  CAS  Google Scholar 

  • Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–2072

    Article  CAS  Google Scholar 

  • Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW (1997) Particle transport in macropores of undisturbed soil columns. J Hydrol 196(1–4):185–203

    Article  CAS  Google Scholar 

  • Jagercikova M, Evrard O, Balesdent J, Lefèvre I, Cornu S (2014a) Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices. Soil Till Res 140:82–97

    Article  Google Scholar 

  • Jagercikova M, Cornu S, Le Bas C, Evrard O (2014b) Vertical distributions of 137Cs in soils: a meta-analysis. J Soils Sediments 15(1):81–95

    Article  Google Scholar 

  • Jagercikova M, Cornu S, Bourlès D, Antoine P, Mayor M, Guillou V (2015) Understanding long-term soil processes using meteoric 10Be: a first attempt on loessic deposits. Quat Geochronol 27:11–21

    Article  Google Scholar 

  • Jamagne M (1973) Contribution à l’étude pédologique des formations loessiques du Nord de la France. Ph.D., Thèse d’état de la faculté des sciences agronomiques, Gembloux Belgique

  • Jamagne M, Pedro G (1981) Les phénomènes de migration et d’accumulation de particules au cours de la pédogenèse sur les formations limoneuses du Nord de la France. Essai de caractérisation du processus de “lessivage”. C R Acad Sci 292:1329–1332

    Google Scholar 

  • Jarvis NJ, Taylor A, Larsbo M, Etana A, Rosen K (2010) Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. Eur J Soil Sci 61(1):24–34

    Article  CAS  Google Scholar 

  • Jenkinson D, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59(2):400–413

    Article  Google Scholar 

  • Jenkinson DS, Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123(5):298–305

    Article  CAS  Google Scholar 

  • Joret G, Malterre H (1947) Les sols du Santerre et du Vermandois. In: Extrait Annales Agronomiques. Dunod, Paris

  • Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35(3):243–246

    Article  Google Scholar 

  • Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, Lierse Von Gostomski C, Kossert K, Maiti M, Poutivtsev M, Remmert A (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum 268:187–191

    Article  CAS  Google Scholar 

  • Koven CD, Riley WJ, Subin ZM, Tang JY, Torn MS, Collins WD, Bonan GB, Lawrence DM, Swenson SC (2013) The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10:7109–7131

    Article  CAS  Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on the Earth. In: Kosmische Strahlung II/Cosmic Rays II. Springer, pp 551e612

  • Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. Journal Contam Hydrol 7(1):51–73

    Article  CAS  Google Scholar 

  • Majdalani S, Michel E, Di Pietro L, Angulo-Jaramillo R, Rousseau M (2007) Mobilization and preferential transport of soil particles during infiltration: a corescale modeling approach. Water Resour Res 43(5). doi:10.1029/2006WR005057

  • Matisoff G, Ketterer ME, Rosen K, Mietelski JW, Vitko LF, Persson H, Lokas E (2011) Downward migration of chernobyl-derived radionuclides in soils in Poland and Sweden. Applied Geochem 26(1):105–115

    Article  CAS  Google Scholar 

  • Milton GM, Kramer SJ, Watson WL, Kotzer TG (2001) Qualitative estimates of soil disturbance in the vicinity of CANDUS stations, utilizing measurements of 137Cs and 210Pb in soil cores. J Environ Radioactiv 55(2):195–205

    Article  CAS  Google Scholar 

  • Pavich MJ, Brown L, Klein J, Middleton R (1984) Be-10 accumulation in a soil chronosequence. Earth Planet Sci Lett 68(2):198e204

    Article  Google Scholar 

  • Pavich MJ, Brown L, Harden J, Klein J, Middleton R (1986) Be-10 distribution in soils from Merced River terraces, California. Geochimica Cosmochimica Acta 50(8):1727e1735

    Article  Google Scholar 

  • Pécsi M (1990) Loess is not just the accumulation of dust. Quat Int 7:1–21

    Article  Google Scholar 

  • Persson T, Lenoir L, Taylor A (2007) Bioturbation in different ecosystems at Forsmark and Oskarhamn. SKB Rapport R-06-123. Stockholm Sweden

  • Quénard L, Samouëlian A, Laroche B, Cornu S (2011) Lessivage as a major process of soil formation: a revisitation of existing data. Geoderma 167-68:135–147

    Article  Google Scholar 

  • Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Pflicht J, Weyhenmeyer CE (2009) Intcal09 and marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51:1111–1150

    Article  CAS  Google Scholar 

  • Roussel-Debel S, Renaud P, Metivier J-M (2007) 137Cs in French soils: deposition patterns and 15-year evolution. Science Total Environ 374(2):388–398

    Article  CAS  Google Scholar 

  • Salvador-Blanes S, Minasny B, McBratney A (2007) Modelling long-term in situ soil profile evolution: application to the genesis of soil profiles containing stone layers. Eur J Soil Sci 58(6):1535–1548

    Article  CAS  Google Scholar 

  • Sammartino S, Lissy AS, Bogner C, Van Den Bogaert R, Capowiez Y, Ruy S, Cornu S (2015) Identifying the functional macropore network related to preferential flow in structured soils. Vadose Zone J 14(10):2–16. doi:10.2136/vzj2015.05.0070

  • Samouelian A, Cornu S (2008) Modelling the formation and evolution of soils, a synthesis. Geoderma 145(3–4):401–409

    Article  CAS  Google Scholar 

  • Sawhney B (1972) Selective sorption and fixation of cations by clay minerals: a review. Clay Clay Miner 20:93–100

    Article  CAS  Google Scholar 

  • Schimmack W, Márquez FF (2006) Migration of fallout radiocaesium in a grassland soil from 1986 to 2001: part II: evaluation of the activity–depth profiles by transport models. Sci Total Environ 368(2):863–874

    Article  CAS  Google Scholar 

  • Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Köhler P, Joos F, Stocker TF, Leuenberger M, Lourantou A, Chappelaz J, Köhler P, Joos F, Stocker TF, Leuenberger M, Fischer H (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336(6082):711–714

    Article  CAS  Google Scholar 

  • Schuller P, Ellies A, Kirchner G (1997) Vertical migration of fallout Cs-137 in agricultural soils from southern Chile. Sci Total Environ 193(3):197–205

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Baize D, Fourrier H, Proix N, Schvartz C, Carignan J (2006) Trace element distributions in soils developed in loess deposits from northern France. Eur J Soil Sci 57(3):392–410

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion; reporting of C-14 data. Radiocarbon 19(3):355–363

    Article  Google Scholar 

  • Swinnen J, Van Veen JA, Merckx R (1994) 14C pulse-labelling of field-frown spring wheat: an evaluation of its use in rhizosphere carbon budget estimation. Soil Biol Biochem 26:161–170

    Article  Google Scholar 

  • Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim Cosmochim Acta 63(6):815–836

    Article  CAS  Google Scholar 

  • Tamura T, Jacobs D (1960) Structural implications in cesium sorption. Health Phys 2(4):391–398

    Article  CAS  Google Scholar 

  • Ullrich A, Volk M (2009) Application of the soil and water assessment tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agric Water Manag 96(8):1207–1217

    Article  Google Scholar 

  • Verbruggen C, Denys L, Kiden P (1996) Belgium. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15000 years. Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. Wiley, Chistester

    Google Scholar 

  • Warembourg FR, Paul EA (1977) Seasonal transfers of assimilated 14C in grassland: plant production and turnover, soil and plant respiration. Soil Biol Biochem 9:295–301

    Article  CAS  Google Scholar 

  • White J, Vaughn B (2011) University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), Stable Isotopic Composition of Atmospheric Carbon Dioxide (13C and 18O) from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1990–2012, Version: 2013–04-05. URL ftp://ftp.cmdl.noaa.gov/ccg/co2c13/flask/event/

  • Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci Rev 97(1–4):257–272

    Article  Google Scholar 

  • Willenbring JK, von Blanckenburg F (2010) Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for earth-surface dynamics. Earth-Sci Rev 98(1e2):105e122

    Google Scholar 

  • You CF, Lee T, Li YH (1989) The partition of Be between soil and water. Chem Geol 77(2):105–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted in the framework of the Agriped project (ANR-10-BLANC-605) supported by the French National Research Agency (ANR). M. Jagercikova received a PhD grant from the French National Institute for Agricultural Research (INRA). The authors are grateful to Dr. Frédéric Golay, Dr. Cédric Galusinski, and Dr. Gloria Faccanoni for their suggestions regarding numerical modeling; to Patrick Signoret for the carbon stable isotope analyses; to Dr. Bruno Mary, Dr. David Montagne, and Nicolas Brunet for providing the soil bulk density data; to the Agriped team for its contribution to sampling; and to the INRA of Mons-en-Chaussée, Grignon, and Arvalis for providing access to their long-term experimental sites and the associated data. M. Arnold, G. Aumaître, and K. Keddadouche are thanked for their valuable assistance during 10Be measurement at the ASTER AMS national facility (CEREGE, Aix-en-Provence), which is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” program for the “Equipements d’excellence” ASTER-CEREGE action (ANR-10-EQPX-24-1), IRD, and the CEA. This is an LSCE contribution no. 2016-5885.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Cornu.

Additional information

Responsible editor: Maxine J. Levin

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(MP4 3695 kb)

ESM 3

(XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagercikova, M., Cornu, S., Bourlès, D. et al. Quantification of vertical solid matter transfers in soils during pedogenesis by a multi-tracer approach. J Soils Sediments 17, 408–422 (2017). https://doi.org/10.1007/s11368-016-1560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1560-9

Keywords

Navigation