Log in

Old-onset caloric restriction effects on neuropeptide Y- and somatostatin-containing neurons and on cholinergic varicosities in the rat hippocampal formation

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Caloric restriction is able to delay age-related neurodegenerative diseases and cognitive impairment. In this study, we analyzed the effects of old-onset caloric restriction that started at 18 months of age, in the number of neuropeptide Y (NPY)- and somatostatin (SS)-containing neurons of the hippocampal formation. Knowing that these neuropeptidergic systems seem to be dependent of the cholinergic system, we also analyzed the number of cholinergic varicosities. Animals with 6 months of age (adult controls) and with 18 months of age were used. The animals aged 18 months were randomly assigned to controls or to caloric-restricted groups. Adult and old control rats were maintained in the ad libitum regimen during 6 months. Caloric-restricted rats were fed, during 6 months, with 60 % of the amount of food consumed by controls. We found that aging induced a reduction of the total number of NPY- and SS-positive neurons in the hippocampal formation accompanied by a decrease of the cholinergic varicosities. Conversely, the 24-month-old-onset caloric-restricted animals maintained the number of those peptidergic neurons and the density of the cholinergic varicosities similar to the 12-month control rats. These results suggest that the aging-associated reduction of these neuropeptide-expressing neurons is not due to neuronal loss and may be dependent of the cholinergic system. More importantly, caloric restriction has beneficial effects in the NPY- and SS-expressing neurons and in the cholinergic system, even when applied in old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MM, Shi L, Linville MC, Forbes ME, Long AB, Bennett C, Newton IG, Carter CS, Sonntag WE, Riddle DR, Brunso-Bechtold JK (2008) Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. Exp Neurol 211:141–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aggleton JP, Brown MW (2006) Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci 10:455–463

    Article  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1995) The hippocampal formation. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego, pp 443–493

    Google Scholar 

  • Andrade JP, Lukoyanov NV, Paula-Barbosa MM (2002) Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus 12:149–164

    Article  PubMed  Google Scholar 

  • Andrade JP, Mesquita R, Assuncão M, Pereira PA (2006) Effects of food restriction on synthesis and expression of brain-derived neurotrophic factor and tyrosine kinase B in dentate gyrus granule cells of adult rats. Neurosci Lett 399:135–140

    Article  CAS  PubMed  Google Scholar 

  • Anton S, Leeuwenburgh C (2013) Fasting or caloric restriction for healthy aging. Exp Gerontol 48:1003–1005

    Article  PubMed Central  PubMed  Google Scholar 

  • Azarbar A, McIntyre DC, Gilby KL (2010) Caloric restriction alters seizure disposition and behavioral profiles in seizure-prone (fast) versus seizure-resistant (slow) rats. Behav Neurosci 124:106–114

    Article  PubMed  Google Scholar 

  • Baraban SC (2004) Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides 38:261–265

    Article  CAS  PubMed  Google Scholar 

  • Bough KJ, Valiyil R, Han FT, Eagles DA (1999) Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Res 35:21–28

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 45:8–15

    Article  CAS  PubMed  Google Scholar 

  • Cadacio CL, Milner TA, Gallagher M, Pierce JP (2003) Hilar neuropeptide Y interneuron loss in the aged rat hippocampal formation. Exp Neurol 183:147–158

    Article  CAS  PubMed  Google Scholar 

  • Cardoso A, Castro JP, Pereira PA, Andrade JP (2013) Prolonged protein deprivation, but not food restriction, affects parvalbumin-containing interneurons in the dentate gyrus of adult rats. Brain Res 1522:22–30

    Article  CAS  PubMed  Google Scholar 

  • Cardoso A, Freitas-da-Costa P, Carvalho LS, Lukoyanov NV (2010) Seizure-induced changes in neuropeptide Y-containing cortical neurons: potential role for seizure threshold and epileptogenesis. Epilepsy Behav 19:559–567

    Article  PubMed  Google Scholar 

  • Cardoso A, Lukoyanova EA, Madeira MD, Lukoyanov NV (2011) Seizure-induced structural and functional changes in the rat hippocampal formation: comparison between brief seizures and status epilepticus. Behav Brain Res 225:538–546

    Article  PubMed  Google Scholar 

  • Cardoso A, Paula-Barbosa MM, Lukoyanov NV (2006) Reduced density of neuropeptide Y neurons in the somatosensory cortex of old male and female rats: relation to cholinergic depletion and recovery after nerve growth factor treatment. Neuroscience 137:937–948

    Article  CAS  PubMed  Google Scholar 

  • Cava E, Fontana L (2013) Will calorie restriction work in humans? Aging (Albany NY) 5:507–514

    Google Scholar 

  • Cha CI, Lee YI, Park KH, Baik SH (1996) Age-related change of neuropeptide Y-immunoreactive neurons in the cerebral cortex of aged rats. Neurosci Lett 214:37–40

    Article  CAS  PubMed  Google Scholar 

  • Cintra L, Díaz-Cintra S, Galván A, Kemper T, Morgane PJ (1990) Effects of protein undernutrition on the dentate gyrus in rats of three age groups. Brain Res 532:271–277

    Article  CAS  PubMed  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contestabile A, Ciani E, Contestabile A (2004) Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 1002:162–166

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC (2012) Gangliosides, NGF, brain aging and disease: a mini-review with personal reflections. Neurochem Res 37:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Maysinger D, Garofalo L (1992) Trophic factor effects on cholinergic innervation in the cerebral cortex of the adult rat brain. Mol Neurobiol 6:451–461

    Article  CAS  PubMed  Google Scholar 

  • Del Arco A, Segovia G, de Blas M, Garrido P, Acuña-Castroviejo D, Pamplona R, Mora F (2011) Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory. Behav Brain Res 216:136–145

    Article  PubMed  Google Scholar 

  • Drexel M, Kirchmair E, Wieselthaler-Hölzl A, Preidt AP, Sperk G (2012) Somatostatin and neuropeptide Y neurons undergo different plasticity in parahippocampal regions in kainic acid-induced epilepsy. J Neuropathol Exp Neurol 71:312–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duan W, Lee J, Guo Z, Mattson MP (2001) Dietary restriction stimulates BDNF production in the brain and thereby protects neurons against excitotoxic injury. J Mol Neurosci 16:1–12

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 57:195–206

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H (1999) The hippocampus and mechanisms of declarative memory. Behav Brain Res 103:123–133

    Article  CAS  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavilán MP, Revilla E, Pintado C, Castaño A, Vizuete ML, Moreno-González I, Baglietto-Vargas D, Sánchez-Varo R, Vitorica J, Gutiérrez A, Ruano D (2007) Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 103:984–996

    Article  PubMed  Google Scholar 

  • Gillette-Guyonnet S, Vellas B (2008) Caloric restriction and brain function. Curr Opin Clin Nutr Metab Care 11:686–692

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Jensen EB, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology–reconsidered. J Microsc 193:199–211

    Article  CAS  PubMed  Google Scholar 

  • Hartman AL, Stafstrom CE (2013) Harnessing the power of metabolism for seizure prevention: focus on dietary treatments. Epilepsy Behav 26:266–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Hattiangady B, Kuruba R, Shetty AK (2011) Acute seizures in old age leads to a greater loss of CA1 pyramidal neurons, an increased propensity for develo** chronic TLE and a severe cognitive dysfunction. Aging Dis 2:1–18

    PubMed Central  PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty GA, Shetty AK (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195:353–371

    Article  CAS  PubMed  Google Scholar 

  • Hauser WA (1992) Seizure disorders: the changes with age. Epilepsia 33(Suppl 4):S6–S14

    Article  PubMed  Google Scholar 

  • Hipólito-Reis J, Pereira PA, Andrade JP, Cardoso A (2013) Prolonged protein deprivation differentially affects calretinin- and parvalbumin-containing interneurons in the hippocampal dentate gyrus of adult rats. Neurosci Lett 555:154–158

    Article  PubMed  Google Scholar 

  • Huh Y, Kim C, Lee W, Kim J, Ahn H (1997) Age-related change in the neuropeptide Y and NADPH-diaphorase-positive neurons in the cerebral cortex and striatum of aged rats. Neurosci Lett 223:157–160

    Article  CAS  PubMed  Google Scholar 

  • Jolkkonen J, Kahkonen K, Pitkanen A (1997) Cholinergic deafferentation exacerbates seizure-induced loss of somatostatin-immunoreactive neurons in the rat hippocampus. Neuroscience 80:401–411

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Choi JH (2000) Effects of age and dietary restriction on animal model SAMP8 mice with learning and memory impairments. J Nutr Health Aging 4:233–238

    CAS  PubMed  Google Scholar 

  • Kowalski C, Micheau J, Corder R, Gaillard R, Conte-Devolx B (1992) Age-related changes in cortico-releasing factor, somatostatin, neuropeptide Y, methionine enkephalin and beta-endorphin in specific rat brain areas. Brain Res 582:38–46

    Article  CAS  PubMed  Google Scholar 

  • Lamour Y, Epelbaum J (1988) Interactions between cholinergic and peptidergic systems in the cerebral cortex and hippocampus. Prog Neurobiol 31:109–148

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Seroogy KB, Mattson MP (2002) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80:539–547

    Article  CAS  PubMed  Google Scholar 

  • Lukoyanov NV, Andrade JP, Dulce Madeira M, Paula-Barbosa MM (1999) Effects of age and sex on the water maze performance and hippocampal cholinergic fibers in rats. Neurosci Lett 269:141–144

    Article  CAS  PubMed  Google Scholar 

  • Marchal J, Dal-Pan A, Epelbaum J, Blanc S, Mueller S, Wittig Kieffer M, Metzger F, Aujard F, Consortium R (2013) Calorie restriction and resveratrol supplementation prevent age-related DNA and RNA oxidative damage in a non-human primate. Exp Gerontol 48:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Martel G, Dutar P, Epelbaum J, Viollet C (2012) Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 3:154

    Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    Article  CAS  PubMed  Google Scholar 

  • Merry BJ (2004) Oxidative stress and mitochondrial function with aging-the effects of calorie restriction. Aging Cell 3:7–12

    Article  CAS  PubMed  Google Scholar 

  • Milner TA, Wiley RG, Kurucz OS, Prince SR, Pierce JP (1997) Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J Comp Neurol 386:46–59

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomska G, Komorowski S, Baksalerska-Pazera M (2002) Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol Aging 23:601–613

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M (2011) The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 221:515–526

    Article  CAS  PubMed  Google Scholar 

  • Patrylo PR, Tyagi I, Willingham AL, Lee S, Williamson A (2007) Dentate filter function is altered in a proepileptic fashion during aging. Epilepsia 48:1964–1978

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Pereira PA, Santos D, Neves J, Madeira MD, Paula-Barbosa MM (2013) Nerve growth factor retrieves neuropeptide Y and cholinergic immunoreactivity in the nucleus accumbens of old rats. Neurobiol Aging 34:1988–1995

    Article  CAS  PubMed  Google Scholar 

  • Perovic M, Tesic V, Mladenovic Djordjevic A, Smiljanic K, Loncarevic-Vasiljkovic N, Ruzdijic S, Kanazir S (2013) BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. Age (Dordr) 35:2057–2070

    Article  CAS  Google Scholar 

  • Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AM (2013) Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. Age (Dordr) 35:1607–1620

    Article  CAS  Google Scholar 

  • Potier B, Jouvenceau A, Epelbaum J, Dutar P (2006) Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus. Neuroscience 142:187–201

    Article  CAS  PubMed  Google Scholar 

  • Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93:9926–9930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rich NJ, Van Landingham JW, Figueiroa S, Seth R, Corniola RS, Levenson CW (2010) Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. J Neurosci Res 88:2933–2939

    CAS  PubMed  Google Scholar 

  • Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci 928:305–315

    Article  CAS  PubMed  Google Scholar 

  • Roth LW, Polotsky AJ (2012) Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas 71:315–319

    Article  PubMed  Google Scholar 

  • Scheen AJ (2008) The future of obesity: new drugs versus lifestyle interventions. Expert Opin Investig Drugs 17:263–267

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  • Shetty PK, Galeffi F, Turner DA (2011) Age-induced alterations in hippocampal function and metabolism. Aging Dis 2:196–218

    PubMed Central  PubMed  Google Scholar 

  • Singh R, Lakhanpal D, Kumar S, Sharma S, Kataria H, Kaur M, Kaur G (2012) Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr) 34:917–933

    Article  CAS  Google Scholar 

  • Slomianka L, West MJ (1987) Asymmetry in the hippocampal region specific for one of two closely related species of wild mice. Brain Res 436:69–75

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76:215–224

    Article  CAS  PubMed  Google Scholar 

  • Sousa N, Almeida OF, Holsboer F, Paula-Barbosa MM, Madeira MD (1998) Maintenance of hippocampal cell numbers in young and aged rats submitted to chronic unpredictable stress. Comparison with the effects of corticosterone treatment. Stress 2:237–249

    Article  CAS  PubMed  Google Scholar 

  • Spiegel AM, Koh MT, Vogt NM, Rapp PR, Gallagher M (2013) Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J Comp Neurol 521:3508–3523

    Article  CAS  PubMed  Google Scholar 

  • Stanley DP, Shetty AK (2004) Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 89:204–216

    Article  CAS  PubMed  Google Scholar 

  • Stanley EM, Fadel JR, Mott DD (2012) Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol Aging 33(431):e431–413

    Google Scholar 

  • Thorsell A, Slawecki CJ, El Khoury A, Mathe AA, Ehlers CL (2006) The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats. Pharmacol Biochem Behav 83:28–34

    Article  CAS  PubMed  Google Scholar 

  • Vela J, Gutierrez A, Vitorica J, Ruano D (2003) Rat hippocampal GABAergic molecular markers are differentially affected by ageing. J Neurochem 85:368–377

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R (1996) Caloric restriction and aging. Sci Am 274:46–52

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Wettstein JG, Earley B, Junien JL (1995) Central nervous system pharmacology of neuropeptide Y. Pharmacol Ther 65:397–414

    Article  CAS  PubMed  Google Scholar 

  • Wong TP, Debeir T, Duff K, Cuello AC (1999) Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J Neurosci 19:2706–2716

    CAS  PubMed  Google Scholar 

  • Ypsilanti AR, Girão da Cruz MT, Burgess A, Aubert I (2008) The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiol Aging 29:1666–1679

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ, Lappi DA, Wrenn CC, Milner TA, Wiley RG (1998) Selective lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons. Brain Res 800:198–206

    Article  CAS  PubMed  Google Scholar 

  • Zhu XO, Waite PM (1998) Cholinergic depletion reduces plasticity of barrel field cortex. Cereb Cortex 8:63–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Funds through FCT, Fundação para a Ciência e a Tecnologia, within the scope of the Strategic Project Centro de Morfologia Experimental (CME/FM/UP), 2011–2012, and Project PEst-OE/SAU/UI0121/2011.

Conflict of interest

All authors state that there are no actual or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Cardoso.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A., Silva, D., Magano, S. et al. Old-onset caloric restriction effects on neuropeptide Y- and somatostatin-containing neurons and on cholinergic varicosities in the rat hippocampal formation. AGE 36, 9737 (2014). https://doi.org/10.1007/s11357-014-9737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9737-x

Keywords

Navigation