Log in

A strategic analysis of incorporating corporate environmental responsibility into managerial incentive design: a differential game approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As corporations’ environmental impacts come under greater scrutiny from global financial, regulatory, and societal stakeholders, management scholars have increasingly focused on the role corporate governance plays in undertaking corporate environmental responsibility (CER). This paper combines managerial incentives and CER in a dynamic environment to formulate a differential game model of managerial incentive design in a duopolistic market, investigating whether companies with profit-maximizing interests are motivated to provide their professional managers with incentives related to CER and the impact of such incentives on corporate profitability, social welfare and emissions reduction. The results demonstrate the following: (1) Employing professional managers increases the emissions reduction efforts of firms and giving incentives to professional managers further increases the emissions reduction level of firms. (2) When a firm employs a professional manager and pays him or her a fixed salary, it generates slightly less income than it does when a manager is not employed; however, if the professional manager is given CER-related incentives, the firm’s income is greatly increased. (3) As long as professional managers are employed, social welfare increases regardless of whether professional managers are given incentive pay. (4) The emissions reduction of a firm increases with an increase in the income distribution coefficient π1. This paper extends the existing CER decision-making model by considering different managerial incentive designs, providing new insights into CER and enterprise organizational strategy and offering useful policy recommendations and a scientific basis for environmental governance, which is expected to be useful for finding ways to balance economic development and environmental protection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Aboody D, Levi S, Weiss D (2018) Managerial incentives, options, and cost-structure choices. Rev Acc Stud 23(2):422–451

    Google Scholar 

  • Adebayo TS (2022a) Environmental consequences of fossil fuel in Spain amidst renewable energy consumption: a new insights from the wavelet-based Granger causality approach. Int J Sustain Dev World Ecol 29(7):1–14

  • Adebayo T S (2022b) Renewable energy consumption and environmental sustainability in Canada: does political stability make a difference? Environ Sci Pollut Res 29:61307–61322

  • Adebayo TS, Agyekum EB, Altuntaş M et al (2022a) Does information and communication technology impede environmental degradation?Fresh insights from non-parametric approaches. Heliyon 8(3):e09108

    Google Scholar 

  • Adebayo TS, Rjoub H, Akadiri SS et al (2022b) The role of economic complexity in the environmental Kuznets curve of MINT economies: evidence from method of moments quantile regression. Environ Sci Pollut Res 29(16):24248–24260

    Google Scholar 

  • Aggarwal RK, Samwick AA (1999) Executive compensation, strategic competition, and relative performance evaluation: theory and evidence. J Financ 54(6):1999–2043

    Google Scholar 

  • Aguilera RV, Aragón-Correa JA, Marano V et al (2021) The corporate governance of environmental sustainability: a review and proposal for more integrated research. J Manag 47(6):1468–1497

    Google Scholar 

  • Akadiri SS, Adebayo TS, Asuzu OC et al (2022) Testing the role of economic complexity on the ecological footprint in China: a nonparametric causality-in-quantiles approach. Energy Environ 0(0):1–17

  • Argento D, Culasso F, Truant E (2019) From sustainability to integrated reporting: the legitimizing role of the CSR manager. Organ Environ 32(4):484–507

    Google Scholar 

  • Asseburg H, Hofmann C (2010) Relative performance evaluation and contract externalities. OR Spectr 32(1):1–20

    Google Scholar 

  • Banerjee S, Homroy S (2018) Managerial incentives and strategic choices of firms with different ownership structures. J Corp Finan 48:314–330

    Google Scholar 

  • Barnett ML, Salomon RM (2012) Does it pay to be really good? Addressing the shape of the relationship between social and financial performance. Strateg Manag J 33(11):1304–1320

    Google Scholar 

  • Bear S, Rahman N, Post C (2010) The impact of board diversity and gender composition on corporate social responsibility and firm reputation. J Bus Ethics 97(2):207–221

    Google Scholar 

  • Bian J, Li KW, Guo X (2016) A strategic analysis of incorporating CSR into managerial incentive design. Transp Res Part E: Logis Transp Rev 86:83–93

    Google Scholar 

  • Cai L, He C (2014) Corporate environmental responsibility and equity prices. J Bus Ethics 125(4):617–635

    Google Scholar 

  • Cai L, Cui J, Jo H (2016) Corporate environmental responsibility and firm risk. J Bus Ethics 139(3):563–594

    Google Scholar 

  • Dam L, Scholtens B (2012) Does ownership type matter for corporate social responsibility? Corp Govern: An Int Rev 20(3):233–252

    Google Scholar 

  • Desender K, Epure M (2021) The pressure behind corporate social performance: ownership and institutional configurations. Glob Strateg J 11(2):210–244

    Google Scholar 

  • Dixon-Fowler HR, Ellstrand AE, Johnson JL (2017) The role of board environmental committees in corporate environmental performance. J Bus Ethics 140(3):423–438

    Google Scholar 

  • Dunbar CG, Li ZF, Shi Y (2020) Corporate social responsibility and CEO risk-taking incentives. J Corp Finan 64(101714);1–21

  • Dutta S, Fan Q (2014) Equilibrium earnings management and managerial compensation in a multiperiod agency setting. Rev Acc Stud 19(3):1047–1077

    Google Scholar 

  • Farmaki A (2019) Corporate social responsibility in hotels: a stakeholder approach. Int J Contemp Hospital Manag 31(6):2297–2320

  • Feng M, Ge W, Luo S et al (2011) Why do CFOs become involved in material accounting manipulations? J Account Econ 51(1-2):21–36

    Google Scholar 

  • Fernandez L (2002) Trade’s dynamic solutions to transboundary pollution. J Environ Econ Manag 43(3):386–411

    Google Scholar 

  • Fershtman C, Judd KL (1987) Equilibrium incentives in oligopoly. Am Econ Rev 1987:927–940

    Google Scholar 

  • Figge F, Hahn T (2013) Value drivers of corporate eco-efficiency: management accounting information for the efficient use of environmental resources. Manag Account Res 24(4):387–400

    Google Scholar 

  • Flammer C (2013) Corporate social responsibility and shareholder reaction: the environmental awareness of investors. Acad Manag J 56(3):758–781

    Google Scholar 

  • Friedman M (2007) The social responsibility of business is to increase its profits. In: Corporate ethics and corporate governance. Springer, Berlin, pp 173–178

    Google Scholar 

  • Fukuda K, Ouchida Y (2020) Corporate social responsibility (CSR) and the environment: Does CSR increase emissions? Energy Econ 92:104933

    Google Scholar 

  • Goering GE (2007) The strategic use of managerial incentives in a non-profit firm mixed duopoly. Manag Decis Econ 28(2):83–91

    Google Scholar 

  • Harjoto MA, Jo H (2011) Corporate governance and CSR nexus. J Bus Ethics 100(1):45–67

    Google Scholar 

  • Helfaya A, Moussa T (2017) Do board's corporate social responsibility strategy and orientation influence environmental sustainability disclosure? UK evidence. Bus Strateg Environ 26(8):1061–1077

    Google Scholar 

  • Hong B, Li Z, Minor D (2016) Corporate governance and executive compensation for corporate social responsibility. J Bus Ethics 136(1):199–213

    Google Scholar 

  • Iyer GR, Jarvis L (2019) CSR adoption in the multinational hospitality context: a review of representative research and avenues for future research. Int J Contemp Hosp Manag 31:2376–2393

    Google Scholar 

  • Jo H, Kim H, Park K (2015) Corporate environmental responsibility and firm performance in the financial services sector. J Bus Ethics 131(2):257–284

    Google Scholar 

  • Kannan YH, Skantz TR, Higgs JL (2014) The impact of CEO and CFO equity incentives on audit scope and perceived risks as revealed through audit fees. Audit J Pract Theory 33(2):111–139

    Google Scholar 

  • Kelsey D, Milne F (2008) Imperfect competition and corporate governance. J Public Econ Theory 10(6):1115–1141

    Google Scholar 

  • Khan A, Muttakin MB, Siddiqui J (2013) Corporate governance and corporate social responsibility disclosures: evidence from an emerging economy. J Bus Ethics 114(2):207–223

    Google Scholar 

  • Kirikkaleli D, Güngör H, Adebayo TS (2022) Consumption-based carbon emissions, renewable energy consumption, financial development and economic growth in Chile. Bus Strateg Environ 31(3):1123–1137

    Google Scholar 

  • Kopel M, Brand B (2012) Socially responsible firms and endogenous choice of strategic incentives. Econ Model 29(3):982–989

    Google Scholar 

  • Kräkel M (2005) On the benefits of withholding knowledge in organizations. Int J Econ Bus 12(2):193–209

    Google Scholar 

  • Li D, Huang M, Ren S et al (2018) Environmental legitimacy, green innovation, and corporate carbon disclosure: evidence from CDP China 100. J Bus Ethics 150(4):1089–1104

    Google Scholar 

  • Liu X, Lu J, Chizema A (2014) Top executive compensation, regional institutions and Chinese OFDI. J World Bus 49(1):143–155

    Google Scholar 

  • Liu P, Teng M, Han C (2020) How does environmental knowledge translate into pro-environmental behaviors?: the mediating role of environmental attitudes and behavioral intentions. Sci Total Environ 728:138126

    CAS  Google Scholar 

  • Liu P, Han C, Teng M (2021) The influence of Internet use on pro-environmental behaviors: an integrated theoretical framework. Resour Conserv Recycl 164:105162

    Google Scholar 

  • Liu P, Han C, Teng M (2022) Does clean cooking energy improve mental health?Evidence from China. Energy Policy 166:113011

    Google Scholar 

  • Lubin DA, Esty DC (2014) Bridging the sustainability gap. MIT Sloan Manag Rev 55(4):18

    Google Scholar 

  • Mahoney LS, Thorn L (2006) An examination of the structure of executive compensation and corporate social responsibility: a Canadian investigation. J Bus Ethics 69(2):149–162

    Google Scholar 

  • Mallin C, Michelon G, Raggi D (2013) Monitoring intensity and stakeholders’ orientation: how does governance affect social and environmental disclosure? J Bus Ethics 114(1):29–43

    Google Scholar 

  • Marinovic I, Varas F (2019) CEO horizon, optimal pay duration, and the escalation of short-termism. J Financ 74(4):2011–2053

    Google Scholar 

  • Meier S, Cassar L (2018) Stop talking about how CSR helps your bottom line. Harv Bus Rev 31

  • Meng X, Zeng S, **e X et al (2016) The impact of product market competition on corporate environmental responsibility. Asia Pac J Manag 33(1):267–291

    Google Scholar 

  • Miller N, Pazgal A (2002) Relative performance as a strategic commitment mechanism. Manag Decis Econ 23(2):51–68

    Google Scholar 

  • Overvest BM, Veldman J (2008) Managerial incentives for process innovation. Manag Decis Econ 29(7):539–545

    Google Scholar 

  • Parsa HG, Lord KR, Putrevu S et al (2015) Corporate social and environmental responsibility in services: will consumers pay for it? J Retail Consum Serv 22:250–260

    Google Scholar 

  • Porter ME, Kramer MR (2011) Creating shared value: redefining capitalism and the role of the corporation in society. Harv Bus Rev 89(1/2):62–77

    Google Scholar 

  • Radu C, Smaili N (2022) Alignment versus monitoring: an examination of the effect of the CSR committee and CSR-linked executive compensation on CSR performance. J Bus Ethics 180:145–163

  • Rodrigue M, Magnan M, Boulianne E (2013) Stakeholders’ influence on environmental strategy and performance indicators: a managerial perspective. Manag Account Res 24(4):301–316

    Google Scholar 

  • Sklivas SD (1987) The strategic choice of managerial incentives. RAND J Econ 452–458

  • Teng M, Zhao M, Han C et al (2022) Research on mechanisms to incentivize corporate environmental responsibility based on a differential game approach. Environ Sci Pollut Res 29:57997–58010

  • Veldman J, Gaalman G (2014) A model of strategic product quality and process improvement incentives. Int J Prod Econ 149:202–210

    Google Scholar 

  • Veldman J, Klingenberg W, Gaalman GJ et al (2014) Getting what you pay for-strategic process improvement compensation and profitability impact. Prod Oper Manag 23(8):1387–1400

    Google Scholar 

  • Vickers J (1985) Delegation and the theory of the firm. Econ J 95:138–147

    Google Scholar 

  • Wang Z, Sarkis J (2017) Corporate social responsibility governance, outcomes, and financial performance. J Clean Prod 162:1607–1616

    Google Scholar 

  • Wang LF, Wang YC, Zhao L (2009) Market share delegation and strategic trade policy. J Ind Compet Trade 9(1):49–56

    Google Scholar 

  • Wang H, Tong L, Takeuchi R et al (2016) Corporate social responsibility: an overview and new research directions: Thematic issue on corporate social responsibility. Academy of Management Briarcliff Manor, New York

    Google Scholar 

  • Xu X, Zeng S, Chen H (2018) Signaling good by doing good: how does environmental corporate social responsibility affect international expansion? Bus Strateg Environ 27(7):946–959

    Google Scholar 

  • Yamak S, Ergur A, Karatas-Ozkan M et al (2019) CSR and leadership approaches and practices: a comparative inquiry of owners and professional executives. Eur Manag Rev 16(4):1097–1114

    Google Scholar 

  • Zhang Y, Wei J, Zhu Y et al (2020) Untangling the relationship between corporate environmental performance and corporate financial performance: the double-edged moderating effects of environmental uncertainty. J Clean Prod 263:121584

    Google Scholar 

  • Zhao X, Sun B (2016) The influence of Chinese environmental regulation on corporation innovation and competitiveness. J Clean Prod 112:1528–1536

    Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant nos. 71972127, 71874123, and 71974122) and the Shanghai Science and Technology Committee (Grant Nos. 19DZ1209202, 21010501800 and 22010501900).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.M.T. and P.H.L.; methodology, M.T.Z.; validation, M.M.T. and P.H.L.; formal analysis, M.T.Z.; investigation, F.C.H.; resources, M.M.T.; data curation, M.M.T.; writing—original draft preparation, M.M.T.; writing—review and editing, P.H.L.; supervision, F.C.H.; project administration, P.H.L.; funding acquisition, P.H.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Pihui Liu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Institutional review board statement

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Arshian Sharif

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Neither firm employs a professional manager

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_1}{\max }{J}_1={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right] dt$$
(33)
$$\underset{E_2}{\max }{J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right] dt$$
(34)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V3(G), V6(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho V_1(G)=\displaystyle\max_{E_1}\left\{\begin{array}{l}\pi_1\left.\left[w_0+\mu_1E_1(t)+\mu_2E_2(t)+\theta G(t)\right]\right)\\-\frac{\eta_1}2\left(E_1(t)\right)^2+V_1^{'}(G)\left[\lambda_1E_1(t)+\lambda_2E_2(t)-\delta G(t)\right]\end{array}\right\}$$
(35)
$$\rho V_2(G)=\displaystyle\max_{E_2}\left\{\begin{array}{l}\pi_2\left.\left[w_0+\mu_1E_1(t)+\mu_2E_2(t)+\theta G(t)\right]\right)-\frac{\eta_2}2\left(E_2(t)\right)^2\\+V_2^{'}(G)\left[\lambda_1E_1(t)+\lambda_2E_2(t)-\delta G(t)\right]\end{array}\right\}$$
(36)

We solve the first-order partial derivative of E1 and E2 on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition.

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\pi_1{\mu}_1+{V}_1^{\prime }{\lambda}_1}{\eta_1}& {E}_2=\frac{\pi_2{\mu}_2+{V}_2^{\prime}\lambda }{\eta_2}\end{array}}$$
(37)

By substituting Formula (37) into HJB Equation (35), we can obtain (36):

$$\rho {V}_1(G)={\pi}_1{W}_0+\left({\pi}_1\theta -\delta {V}_1^{\prime}\right)G+\frac{{\left({\pi}_1{\mu}_1+{V}_1^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1}+\frac{\left({\pi}_2{\mu}_2+{V}_2^{\prime }{\lambda}_2\right)\left({\pi}_1{\mu}_2+{V}_1^{\prime }{\lambda}_2\right)}{\eta_2}$$
(38)
$$\rho {V}_2(G)={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {V}_2^{\prime}\right)G+\frac{{\left({\pi}_2{\mu}_2+{V}_2^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{\left({\pi}_1{\mu}_1+{V}_1^{\prime }{\lambda}_1\right)\left({\pi}_2{\mu}_1+{V}_2^{\prime }{\lambda}_1\right)}{\eta_1}$$
(39)

We assume that the expression of function V1(G), V2(G) is in linear form.

$${\displaystyle \begin{array}{cc}{V}_1(G)={a}_1G+{b}_1& {V}_2(G)={a}_2G+{b}_2\end{array}}$$
(40)

where a1, b1, a2, and b2 are constants.

$${\displaystyle \begin{array}{cc}{V}_1^{\prime }(G)={a}_1& {V}_2^{\prime }(G)={a}_2\end{array}}$$
(41)

By substituting Formula (40) and Formula (41) into Formula (38), we can obtain Formula (41):

$$\rho \left({a}_1G+{b}_1\right)={\pi}_1{W}_0+\left({\pi}_1\theta -\delta {a}_1\right)G+\frac{{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)}^2}{2{\eta}_1}+\frac{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_1{\lambda}_2\right)}{\eta_2}$$
(42)
$$\rho \left({a}_2G+{b}_2\right)={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {a}_2\right)G+\frac{{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_2{\lambda}_1\right)}{\eta_1}$$
(43)

The linear equations about a1, b1, a2, b2 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_1=\frac{\pi_1\theta }{\rho +\delta }$$
(44)
$${b}_1=\frac{\pi_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)}^2}{2{\eta}_1\rho }+\frac{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_1{\lambda}_2\right)}{\rho {\eta}_2}$$
(45)
$${a}_2=\frac{\pi_2\theta }{\rho +\delta }$$
(46)
$${b}_2=\frac{\pi_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)}^2}{2{\eta}_2\rho }+\frac{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_2{\lambda}_1\right)}{\rho {\eta}_1}$$
(47)

By substituting Formulas (44)~(45) into Formulas (37) and (40), respectively, we can obtain proposition 1.

Proposition 1

If professional managers are not employed, the Nash equilibrium solutions of the decentralized and independent decision-making of firm 1 and firm 2 are as follows:

$${E}_1^{\ast }=\frac{\pi_1\left({\mu}_1\rho +{\pi}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_1}$$
(48)
$${E}_2^{\ast }=\frac{\pi_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2}$$
(49)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast }=\frac{\lambda_1{\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)}+\frac{\lambda_2{\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)}$$
(50)

Under this game equilibrium, the optimal income expression of high-pollution firm 1 and firm 2 are as follows:

$${V}_1^{\ast }(G)=\frac{\pi_1\theta }{\rho +\delta }G+\frac{\pi_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)}^2}{2{\eta}_1\rho }+\frac{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)\left({\pi}_1{\mu}_1+{a}_1{\lambda}_2\right)}{\rho {\eta}_2}$$
(51)
$${V}_2^{\ast }(G)=\frac{\pi_2\theta }{\rho +\delta }G+\frac{\pi_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_2{\lambda}_2\right)}^2}{2{\eta}_1\rho }+\frac{\left({\pi}_1{\mu}_1+{a}_1{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_2{\lambda}_2\right)}{\rho {\eta}_1}$$
(52)

Appendix 2. One firm pays a fixed salary to employ a professional manager, and the other firm does not employ a professional manager

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_2}{\max }{J}_1={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2-{\gamma}_1\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)\right] dt$$
(53)
$$\underset{E_2}{\max }{J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right] dt$$
(54)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V3(G), V4(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho {V}_3(G)=\underset{E_1}{\max}\left\{\begin{array}{l}{\pi}_2\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-{\gamma}_1{\pi}_1{W}_0\\ {}-\left(1-{\gamma}_1\right)\frac{\eta_1}{2}{\left({E}_1(t)\right)}^2+{V}_3^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(55)
$$\rho {V}_4(G)=\underset{E_2}{\max}\left\{\begin{array}{l}{\pi}_2\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)\\ {}-\frac{\eta_2}{2}{\left({E}_2(t)\right)}^2+{V}_4^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(56)

We solve the first-order partial derivative about E1 and E2 on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition.

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\pi_1{\mu}_1+{V}_3^{\prime }{\lambda}_1}{\eta_1\left(1-{\gamma}_1\right)}& {E}_2=\frac{\pi_2{\mu}_2+{V}_4^{\prime }{\lambda}_2}{\eta_2}\end{array}}$$
(57)

By substituting Formula (57) into HJB Equation (55), we can obtain (56):

$$\rho {V}_3(G)={\pi}_1{W}_0\left(1-{\gamma}_1\right)+\left({\pi}_1\theta -\delta {V}_3^{\prime}\right)G+\frac{{\left({\pi}_1{\mu}_1+{V}_3^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1\right)}+\frac{{\left({\pi}_2{\mu}_2+{V}_4^{\prime }{\lambda}_2\right)}^2\left({\pi}_1{\mu}_2+{V}_3^{\prime }{\lambda}_2\right)}{\eta_2}$$
(58)
$$\rho {V}_4(G)={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {V}_3^{\prime}\right)G+\frac{{\left({\pi}_2{\mu}_2+{V}_4^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{{\left({\pi}_1{\mu}_1+{V}_3^{\prime }{\lambda}_1\right)}^2\left({\pi}_2{\mu}_1+{V}_4^{\prime }{\lambda}_1\right)}{\eta_1}$$
(59)

We assume that the expression of function V3(G), V4(G) is in linear form:

$$\begin{array}{cc}V_1(G)=a_1G+b_1&V_2(G)=a_2G+b_2\end{array}$$
(60)

where a3, b3, a4, and b4 are constants.

$$\begin{array}{cc}V_1^{'}(G)=a_1&V_2^{'}(G)=a_2\end{array}$$
(61)

By substituting Formula (60) and Formula (61) into Formula (58), we can obtain Formula (59):

$$\rho \left({a}_3G+{b}_3\right)={\pi}_1{W}_0\left(1-{\gamma}_1\right)+\left({\pi}_1\theta -\delta {a}_3\right)G+\frac{{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_3{\lambda}_2\right)}{\eta_2}$$
(62)
$$\rho \left({a}_4G+{b}_4\right)={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {a}_4\right)G+\frac{{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_4{\lambda}_1\right)}{\eta_1}$$
(63)

The linear equations about a3, b3, a4, b4 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_3=\frac{\pi_1\theta }{\rho +\delta }$$
(64)
$${b}_3=\frac{\left(1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_3{\lambda}_2\right)}{\rho {\eta}_2}$$
(65)
$${a}_4=\frac{\pi_2\theta }{\rho +\delta }$$
(66)
$${b}_4=\frac{\pi_1{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)}^2}{2{\eta}_2\rho }+\frac{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_4{\lambda}_1\right)}{\rho {\eta}_1}$$
(67)

By substituting Formulas (64)~(67) into Formulas (57) and (60), respectively, we can obtain proposition 2.

Proposition 2

When high-pollution firm 1 employs a professional manager and provides incentives and firm 2 does not employ a professional manager, the independent and decentralized Nash equilibrium solution when each owner makes production decisions is as follows:

$${E}_1^{\ast \ast }=\frac{\pi_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_1\left(1-{\gamma}_1\right)}$$
(68)
$${E}_2^{\ast \ast }=\frac{\pi_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2}$$
(69)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast }=\frac{\lambda_1{\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)\left(1-{\gamma}_1\right)}+\frac{\lambda_2{\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)}$$
(70)

Under this game equilibrium, the optimal income expression of high-pollution firms 1 and 2 are as follows:

$${V}_3^{\ast }(G)=\frac{\pi_1\theta }{\rho +\delta }G+\frac{\left(1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_3{\lambda}_2\right)}{\rho {\eta}_2}$$
(71)
$${V}_4^{\ast }(G)=\frac{\pi_2\theta }{\rho +\delta }G+\frac{\pi_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_4{\lambda}_2\right)}^2}{2{\eta}_2\rho }+\frac{\left({\pi}_1{\mu}_1+{a}_3{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_4{\lambda}_1\right)}{\rho {\eta}_1}$$
(72)

Appendix 3. One firm pays additional incentive compensation to an employed professional manager, and the other firm does not employ a professional manager

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_1}{\max }{J}_1={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_2\right)}^2-{\gamma}_1\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)-{\beta}_1\left({\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)\right] dt$$
(73)
$$\underset{E_1}{\max }{J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_1{\left({E}_2\right)}^2\right] dt$$
(74)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V5(G), V6(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho {V}_5(G)=\underset{E_1}{\max}\left\{\begin{array}{l}\left(1-{\beta}_1\right){\pi}_1\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)\\ {}-\left(1-{\gamma}_1-{\beta}_1\right)\frac{\eta_1}{2}{\left({E}_1(t)\right)}^2{\gamma}_1{\pi}_1{W}_0+{V}_5^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(75)
$$\rho {V}_6(G)=\underset{E_2}{\max}\left\{\begin{array}{l}{\pi}_2\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-\frac{\eta_2}{2}{\left({E}_2(t)\right)}^2\\ {}{V}_6^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(76)

We solve the first-order partial derivative about E1 and E2 on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition.

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_5^{\prime }{\lambda}_1}{\eta_1\left(1-{\gamma}_1-{\beta}_1\right)}& {E}_2=\frac{\pi_2{\mu}_2+{V}_6^{\prime}\lambda }{\eta_2}\end{array}}$$
(77)

By substituting Formula (77) into HJB Equation (75), we can obtain (75):

$${\displaystyle \begin{array}{l}\rho {V}_5(G)=\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {V}_5^{\prime}\right)G\\ {}+\frac{{\left(\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_5^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{V}_6^{\prime }{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{V}_5^{\prime }{\lambda}_2\right)}{\eta_2}\end{array}}$$
(78)
$$\rho {V}_6(G)={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {V}_5^{\prime}\right)G+\frac{{\left({\pi}_2{\mu}_2+{V}_6^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{\left({\pi}_1{\mu}_1+{V}_5^{\prime }{\lambda}_1\right)\left({\pi}_2{\mu}_1+{V}_6^{\prime }{\lambda}_2\right)}{\eta_1}$$
(79)

We assume that the expression of function V5(G),   V6(G) is in linear form:

$${\displaystyle \begin{array}{cc}{V}_5(G)={a}_5G+{b}_5& {V}_6(G)={a}_6G+{b}_6\end{array}}$$
(80)

where a5 b5, a6, and b6 are constants.

$${\displaystyle \begin{array}{cc}{V}_5^{\prime }(G)={a}_5& {V}_6^{\prime }(G)={a}_6\end{array}}$$
(81)

By substituting Formula (80) and Formula (81) into Formula (78), we can obtain Formula (79):

$${\displaystyle \begin{array}{c}\rho \Big({a}_5G+{b}_5=\left(1-{\beta}_1-{\gamma}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {a}_5\right)G+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_5{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}\\ {}+\frac{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_5{\lambda}_2\right)}{\eta_2}\end{array}}$$
(82)
$$\rho \Big({a}_6G+{b}_6={\pi}_2{W}_0+\left({\pi}_2\theta -\delta {a}_6\right)G+\frac{{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)}^2}{2{\eta}_2}+\frac{\left({\pi}_1{\mu}_1+{a}_5{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_6{\lambda}_1\right)}{\eta_1}$$
(83)

The linear equations about a5, b5, a6, b6 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_5=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }$$
(84)
$${b}_5=\frac{\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_5{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_5{\lambda}_2\right)}{\rho {\eta}_2}$$
(85)
$${a}_6=\frac{\pi_2\theta }{\rho +\delta }$$
(86)
$${b}_6=\frac{\pi_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)}^2}{2{\eta}_2\rho }$$
(87)

Substituting Formulas (84)~(87) into Formulas (77) and (80), respectively, yields proposition 3.

Proposition 3

High-pollution firm 1 employs a professional manager and pays incentives. When firm 2 does not employ a professional manager, the Nash equilibrium of firm 1 and firm 2 is solved as:

$${E}_1^{\ast \ast \ast }=\frac{\left(1-{\beta}_1\right){\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}$$
(88)
$${E}_2^{\ast \ast \ast }=\frac{\pi_2\left({\mu}_1\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2}$$
(89)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast \ast \ast }=\frac{\lambda_1{\pi}_1\left(1-{\beta}_1\right)\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\lambda_2{\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)}$$
(90)

Under this game equilibrium, the optimal income expressions of high-pollution firms 1 and 2 are as follows:

$${\displaystyle \begin{array}{l}{V}_5^{\ast }(G)=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }G+\frac{\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_5{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1-{\beta}_1\right)}\\ {}+\frac{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_5{\lambda}_2\right)}{\rho {\eta}_2}\end{array}}$$
(91)
$${V}_6^{\ast }(G)=\frac{\pi_2\theta }{\rho +\delta }G+\frac{\pi_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_6{\lambda}_2\right)}^2}{2{\eta}_2\rho }+\frac{\left({\pi}_1{\mu}_1+{a}_5{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_6{\lambda}_1\right)}{\rho {\eta}_1}$$
(92)

Appendix 4. Both firms pay a fixed salary to employ a professional manager

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_1}{\max }{J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_2\right)}^2-{\gamma}_1\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)\right] dt$$
(93)
$$\underset{E_1}{\max }{J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2-{\gamma}_2\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right)\right] dt$$
(94)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V7(G)V8(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho {V}_5(G)=\underset{E_1}{\max}\left\{\begin{array}{l}{\pi}_1\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-\left(1-{\gamma}_1\right)\frac{\eta_1}{2}{\left({E}_1(t)\right)}^2\\ {}{\gamma}_1{\pi}_1{W}_0+{V}_7^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(95)
$$\rho {V}_8(G)=\underset{E_2}{\max}\left\{\begin{array}{l}{\pi}_2\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-\left(1-{\gamma}_1\right)\frac{\eta_2}{2}{\left({E}_2(t)\right)}^2\\ {}{\gamma}_2{\pi}_2{W}_0+{V}_8^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(96)

We solve the first-order partial derivative about E1 and E2 on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition.

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\pi_1{\mu}_1+{V}_7^{\prime }{\lambda}_1}{\eta_1\left(1-{\gamma}_1\right)}& {E}_8=\frac{\pi_2{\mu}_2+{V}_8^{\prime }{\lambda}_2}{\eta_2\left(1-{\gamma}_2\right)}\end{array}}$$
(97)

By substituting Formula (97) into HJB Equation (95), we can obtain (96):

$$\rho {V}_7(G)=\left(1-{\gamma}_1\right){\pi}_1{W}_0+\left({\pi}_1\theta -\delta {V}_7^{\prime}\right)G+\frac{{\left({\pi}_1{\mu}_1+{V}_7^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{V}_8^{\prime }{\lambda}_2\right)\left({\pi}_1{\mu}_2+{V}_7^{\prime }{\lambda}_2\right)}{\eta_2\left(1-{\gamma}_2\right)}$$
(98)
$$\rho {V}_8(G)=\left(1-{\gamma}_2\right){\pi}_2{W}_0+\left({\pi}_2\theta -\delta {V}_8^{\prime}\right)G+\frac{{\left({\pi}_2{\mu}_2+{V}_8^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{V}_7^{\prime }{\lambda}_1\right)\left({\pi}_2{\mu}_1+{V}_8^{\prime }{\lambda}_1\right)}{\eta_1\left(1-{\gamma}_1\right)}$$
(99)

We assume that the expression of function V7(G), V8(G) is in linear form:

$${\displaystyle \begin{array}{cc}{V}_7(G)={a}_7G+{b}_7& {V}_8(G)={a}_8G+{b}_8\end{array}}$$
(100)

where a7, b7, a8, and b8 are constants.

$${\displaystyle \begin{array}{cc}{V}_7^{\prime }(G)={a}_7& {V}_8^{\prime }(G)={a}_8\end{array}}$$
(101)

By substituting Formula (100) and Formula (101) into Formula (98), Formula (99) can be obtained:

$$\rho \left({a}_7G+{b}_7\right)=\left(1-{\gamma}_1\right){\pi}_1{W}_0+\left({\pi}_1\theta -\delta {a}_7\right)G+\frac{{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_7{\lambda}_2\right)}{\eta_2\left(1-{\gamma}_2\right)}$$
(102)
$$\rho \left({a}_8G+{b}_8\right)=\left(1-{\gamma}_2\right){\pi}_2{W}_0+\left({\pi}_2\theta -\delta {a}_8\right)G+\frac{{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_8{\lambda}_1\right)}{\eta_1\left(1-{\gamma}_1\right)}$$
(103)

The linear equations about a7, b7, a8, b8 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_7=\frac{\pi_1\theta }{\rho +\delta }$$
(104)
$${b}_7=\frac{\left(1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_7{\lambda}_2\right)}{\rho {\eta}_2\left(1-{\gamma}_2\right)}$$
(105)
$${a}_8=\frac{\pi_2\theta }{\rho +\delta }$$
(106)
$${b}_8=\frac{\left(1-{\gamma}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_8{\lambda}_1\right)}{\rho {\eta}_1\left(1-{\gamma}_1\right)}$$
(107)

By substituting formulas (104)~(107) into Formulas (97) and (100), respectively, we can obtain proposition 4.

Proposition 4

The Nash equilibrium solution when high-pollution firms 1 and 2 both employ professional managers and pay fixed salaries is as follows:

$${E}_1^{\ast \ast \ast \ast }=\frac{\pi_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_1\left(1-{\gamma}_1\right)}$$
(108)
$${E}_2^{\ast \ast \ast \ast }=\frac{\pi_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2\left(1-{\gamma}_2\right)}$$
(109)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast \ast \ast \ast }=\frac{\lambda_1{\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)\left(1-{\gamma}_1\right)}+\frac{\lambda_2{\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)\left(1-{\gamma}_2\right)}$$
(110)

Under this game equilibrium, the optimal income expressions of high-pollution firms 1 and 2 are as follows:

$${V}_7^{\ast }(G)=\frac{\pi_1\theta }{\rho +\delta }G+\frac{\left(1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)\left({\pi}_1{\mu}_2+{a}_7{\lambda}_2\right)}{\left(1-{\gamma}_2\right)\rho {\eta}_2}$$
(111)
$${V}_8^{\ast }(G)=\frac{\pi_2\theta }{\rho +\delta }G+\frac{\left(1-{\gamma}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_8{\lambda}_2\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{a}_7{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_8{\lambda}_1\right)}{\rho {\eta}_1\left(1-{\gamma}_1\right)}$$
(112)

Appendix 5. One firm pays a fixed salary to employ a professional manager, and the other firm pays additional incentive compensation an employed professional manager

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_1}{\max }\ {J}_1={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2-{\gamma}_1\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right)-{\beta}_1\left({\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)\right] dt$$
(113)
$$\underset{E_2}{\max }\ {J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2-{\gamma}_2\left({\pi}_2{W}_0-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right)\right] dt$$
(114)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V9(G), V10(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho {V}_9(G)=\underset{E_1}{\max}\left\{\begin{array}{l}\left(1-{\beta}_1\right){\pi}_1\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-\left(1-{\gamma}_1\right)\frac{\eta_1}{2}{\left({E}_1(t)\right)}^2\\ {}-{\gamma}_2{\pi}_1{W}_0+{V}_9^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(115)
$$\rho {V}_{10}(G)=\underset{E_2}{\max}\left\{\begin{array}{l}{\pi}_2\left.\left[{w}_0+{\mu}_1{E}_1(t)+{\mu}_2{E}_2(t)+\theta G(t)\right]\right)-\left(1-{\gamma}_2\right)\frac{\eta_2}{2}{\left({E}_2(t)\right)}^2\\ {}-{\gamma}_2{\pi}_2{W}_0+{V}_{10}^{\prime }(G)\left[{\lambda}_1{E}_1(t)+{\lambda}_2{E}_2(t)-\delta G(t)\right]\end{array}\right\}$$
(116)

We solve the first-order partial derivative about E1, E2, respectively, on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition:

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_9^{\prime }{\lambda}_1}{\eta_1\left(1-{\gamma}_1-{\beta}_1\right)}& {E}_2=\frac{\pi_2{\mu}_2+{V}_{10}^{\prime }{\lambda}_2}{\eta_2\left(1-{\gamma}_2\right)}\end{array}}$$
(117)

Substituting formula (118) into HJB equations (116) and (117) yields:

$${\displaystyle \begin{array}{l}\rho {V}_9(G)=\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {V}_9^{\prime}\right)G\\ {}+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_9^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{V}_{10}^{\prime }{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{V}_9^{\prime }{\lambda}_2\right)}{\left(1-{\gamma}_2\right){\eta}_2}\end{array}}$$
(118)
$${\displaystyle \begin{array}{c}\rho {V}_{10}(G)=\left(1-{\gamma}_2\right){\pi}_2{W}_0+\left({\pi}_2\theta -\delta {V}_{10}^{\prime}\right)G+\frac{{\left({\pi}_2{\mu}_2+{V}_{10}^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2\right)}\\ {}+\frac{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_9^{\prime }{\lambda}_1\right)\left({\pi}_2{\mu}_1+{V}_{10}^{\prime }{\lambda}_1\right)}{\eta_1\left(1-{\gamma}_1-{\beta}_1\right)}\end{array}}$$
(119)

We assume that the expression of function V9(G), V10(G) is in linear form:

$${\displaystyle \begin{array}{cc}{V}_9(G)={a}_9G+{b}_9& {V}_{10}(G)={a}_{10}G+{b}_{10}\end{array}}$$
(120)

where a9 b9, a10, and b10 are constants.

$${\displaystyle \begin{array}{cc}{V}_9^{\prime }(G)={a}_9& {V}_{10}^{\prime }(G)={a}_{10}\end{array}}$$
(121)

By substituting formula (120) and formula (121) into formula (119), we can obtain formula (118):

$${\displaystyle \begin{array}{l}\rho \left({a}_9G+{b}_9\right)=\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {a}_9\right)G\\ {}+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_9{\lambda}_2\right)}{\left(1-{\gamma}_2\right){\eta}_2}\end{array}}$$
(122)
$${\displaystyle \begin{array}{c}\rho \left({a}_{10}G+{b}_{10}\right)=\left(1-{\gamma}_2\right){\pi}_2{W}_0+\left({\pi}_2\theta -\delta {a}_{10}\right)G\\ {}+\frac{{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2\right)}+\frac{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_{10}{\lambda}_1\right)}{\eta_1\left(1-{\gamma}_1-{\beta}_1\right)}\end{array}}$$
(123)

The linear equations about a9, b9, a10, b10 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_9=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }$$
(124)
$${b}_9=\frac{\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_9{\lambda}_2\right)}{\rho {\eta}_2\left(1-{\gamma}_2\right)}$$
(125)
$${a}_{10}=\frac{\pi_2\theta }{\rho +\delta }$$
(126)
$${b}_{10}=\frac{\left(1-{\gamma}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_2\right)}+\frac{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_{10}{\lambda}_1\right)}{\rho {\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}$$
(127)

By substituting formulas (124)~(41) into formulas (118) and (119), respectively, we can obtain proposition 5.

Proposition 5

The Nash equilibrium solution when high-pollution firms 1 and 2 both employ professional managers and pay a fixed salary is:

$${E}_1^{\ast \ast \ast \ast \ast }=\frac{\left(1-{\beta}_1\right){\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_2\left(1-{\gamma}_1-{\beta}_1\right)}$$
(128)
$${E}_1^{\ast \ast \ast \ast \ast }=\frac{\pi_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2\left(1-{\gamma}_2\right)}$$
(129)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast \ast \ast \ast \ast }=\frac{\lambda_1{\pi}_1\left(1-{\beta}_1\right)\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\lambda_2{\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)}$$
(130)

Under this game equilibrium, the optimal income expression of high-pollution firms 1 and 2 are as follows:

$${\displaystyle \begin{array}{l}{V}_9^{\ast }(G)=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }G+\frac{\left(1-{\beta}_1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_2\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1-{\beta}_1\right)}\\ {}+\frac{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_9{\lambda}_2\right)}{\rho {\eta}_2\left(1-{\gamma}_2\right)}\end{array}}$$
(131)
$${V}_{10}^{\ast }(G)=\frac{\pi_2\theta }{\rho +\delta }G+\frac{\left(1-{\gamma}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left({\pi}_2{\mu}_2+{a}_{10}{\lambda}_2\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_2\right)}+\frac{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_9{\lambda}_1\right)\left({\pi}_2{\mu}_1+{a}_{10}{\lambda}_1\right)}{\rho {\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}$$
(132)

Appendix 6. Both firms pay additional incentive compensation to employed professional managers

The objective functions of the decisions of firm 1 and firm 2 are simplified as:

$$\underset{E_1}{\max }\ {J}_1={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2-{\gamma}_1\left({\pi}_1{W}_0-\frac{1}{2}{\eta}_1{\left({E}_2\right)}^2\right)-{\beta}_1\left({\pi}_1w(t)-\frac{1}{2}{\eta}_1{\left({E}_1\right)}^2\right)\right] dt$$
(133)
$$\underset{E_2}{\max }\ {J}_2={\int}_0^{\infty }{e}^{-\rho t}\left[{\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2-{\gamma}_2\left({\pi}_2{W}_0-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right)-{\beta}_2\left({\pi}_2w(t)-\frac{1}{2}{\eta}_2{\left({E}_2\right)}^2\right)\right] dt$$
(134)

To obtain the Markov-refined Nash equilibrium of the noncooperative game, we construct a continuous and bounded differential function, V11(G), V12(G), which satisfies the Hamilton-Jacobi-Bellman (HJB) equation for all G ≥ 0.

$$\rho V_{11}(G)=\displaystyle\max_{E_1}\left\{\begin{array}{l}\left(1-\beta_1\right)\pi_1\left.\left[w_0+\mu_1E_{11}(t)+\mu_2E_2(t)+\theta G(t)\right]\right)-\left(1-\gamma_1-\beta_1\right)\frac{\eta_1}2\left(E_1(t)\right)^2\\-\gamma_2\pi_1+W_0+V_{11}^{'}(G)\left[\lambda_1E_1(t)+\lambda_2E_2(t)-\delta G(t)\right]\end{array}\right\}$$
(135)
$$\rho V_{12}(G)=\displaystyle\max_{E_2}\left\{\begin{array}{l}\left(1-\beta_2\right)\pi_2\left.\left[w_0+\mu_1E_1(t)+\mu_2E_2(t)+\theta G(t)\right]\right)-\left(1-\gamma_2-\beta_2\right)\frac{\eta_2}2\left(E_2(t)\right)^2\\-\gamma_2\pi_2+W_0+V_{12}^{'}(G)\left[\lambda_1E_1(t)+\lambda_2E_2(t)-\delta G(t)\right]\end{array}\right\}$$
(136)

We solve the first-order partial derivative about E1, E2, respectively, on the right side of the HJB equation, set the first-order partial derivative equal to zero, and obtain the maximization condition:

$${\displaystyle \begin{array}{cc}{E}_1=\frac{\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_{11}^{\prime }{\lambda}_1}{\eta_1\left(1-{\gamma}_1-{\beta}_1\right)}& {E}_2=\frac{\left(1-{\beta}_2\right){\pi}_2{\mu}_2+{V}_{12}^{\prime }{\lambda}_2}{\eta_2\left(1-{\gamma}_2-{\beta}_2\right)}\end{array}}$$
(137)

By substituting formula (138) into HJB equation (136), we can obtain (137):

$${\displaystyle \begin{array}{l}\rho {V}_{11}(G)=\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {V}_{11}^{\prime}\right)G\\ {}+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{V}_{11}^{\prime }{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{{\left({\pi}_2{\mu}_2+{V}_{12}^{\prime }{\lambda}_2\right)}^2\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{V}_{11}^{\prime }{\lambda}_2\right)}{\eta_2}\end{array}}$$
(138)
$${\displaystyle \begin{array}{l}\rho {V}_{12}(G)=\left(1-{\gamma}_2-{\beta}_2\right){\pi}_2{W}_0+\left(\left(1-{\beta}_2\right){\pi}_2\theta -\delta {V}_{12}^{\prime}\right)G\\ {}+\frac{{\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_2+{V}_{12}^{\prime }{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2-{\beta}_2\right)}+\frac{{\left({\pi}_1{\mu}_1+{V}_{11}^{\prime }{\lambda}_1\right)}^2\left(\left(1-{\beta}_1\right){\pi}_2{\mu}_1+{V}_{12}^{\prime }{\lambda}_1\right)}{\eta_1}\end{array}}$$
(139)

We assume that the expression of function V11(G), V12(G) is in linear form:

$${\displaystyle \begin{array}{cc}{V}_{11}(G)={a}_{11}G+{b}_{11}& {V}_{12}(G)={a}_{12}G+{b}_{12}\end{array}}$$
(140)

where a11 b11, a12, and b12 are constants.

$${\displaystyle \begin{array}{cc}{V}_{11}^{\prime }(G)={a}_{11}& {V}_{12}^{\prime }(G)={a}_{12}\end{array}}$$
(141)

By substituting formula (140) and formula (141) into formula (138), we can obtain formula (139):

$${\displaystyle \begin{array}{l}\rho \left({a}_{11}G+{b}_{11}\right)=\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0+\left(\left(1-{\beta}_1\right){\pi}_1\theta -\delta {a}_{11}\right)G\\ {}+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)}^2}{2{\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_{11}{\lambda}_2\right)}{\eta_2}\end{array}}$$
(142)
$${\displaystyle \begin{array}{l}\rho \left({a}_{12}G+{b}_{12}\right)=\left(1-{\gamma}_2-{\beta}_2\right){\pi}_2{W}_0+\left(\left(1-{\beta}_2\right){\pi}_2\theta -\delta {a}_{12}\right)G\\ {}+\frac{{\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)}^2}{2{\eta}_2\left(1-{\gamma}_2-{\beta}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_1+{a}_{12}{\lambda}_1\right)}{\eta_1}\end{array}}$$
(143)

The linear equations about a11, b11, a12, b12 can be obtained, and the coefficients of the same terms at both ends of the equation can be obtained:

$${a}_{11}=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }$$
(144)
$${b}_{11}=\frac{\left(1-{\gamma}_1-{\beta}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\left({\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_{11}{\lambda}_2\right)}{\rho {\eta}_2}$$
(145)
$${a}_{12}=\frac{\left(1-{\beta}_2\right){\pi}_2\theta }{\rho +\delta }$$
(146)
$${b}_{12}=\frac{\left(1-{\gamma}_2-{\beta}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)}^2}{2{\eta}_2\rho \left(1-{\gamma}_2-{\beta}_2\right)}+\frac{\left({\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_1+{a}_{12}{\lambda}_1\right)}{\rho {\eta}_1}$$
(147)

By substituting formulas (144)~(147) into formulas (137) and (140), respectively, we can obtain proposition 6.

Proposition 6

The Nash equilibrium solution when high-pollution firms 1 and 2 both employ professional managers and pay incentives is:

$${E}_1^{\ast \ast \ast \ast }=\frac{\left(1-{\beta}_1\right){\pi}_1\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\left(\rho +\delta \right){\eta}_1\left(1-{\gamma}_1-{\beta}_1\right)}$$
(148)
$${E}_2^{\ast \ast \ast \ast }=\frac{\left(1-{\beta}_1\right){\pi}_2\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\left(\rho +\delta \right){\eta}_2\left(1-{\gamma}_2-{\beta}_2\right)}$$
(149)

The steady-state emissions reductions are:

$${G}_{\infty}^{\ast \ast \ast \ast \ast \ast }=\frac{\lambda_1{\pi}_1\left(1-{\beta}_1\right)\left({\mu}_1\rho +{\mu}_1\delta +\theta {\lambda}_1\right)}{\delta {\eta}_1\left(\rho +\delta \right)\left(1-{\gamma}_1-{\beta}_1\right)}+\frac{\lambda_2{\pi}_2\left(1-{\beta}_2\right)\left({\mu}_2\rho +{\mu}_2\delta +\theta {\lambda}_2\right)}{\delta {\eta}_2\left(\rho +\delta \right)\left(1-{\gamma}_2-{\beta}_2\right)}$$
(150)

Under this game equilibrium, the optimal income expressions of high-pollution firms 1 and 2 are as follows:

$${\displaystyle \begin{array}{l}{V}_{11}^{\ast }(G)=\frac{\left(1-{\beta}_1\right){\pi}_1\theta }{\rho +\delta }G+\frac{\left(1-{\beta}_1-{\gamma}_1\right){\pi}_1{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_1-{\beta}_1\right)}\\ {}+\frac{\left({\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)\left(\left(1-{\beta}_1\right){\pi}_1{\mu}_2+{a}_{11}{\lambda}_2\right)}{\rho {\eta}_2}\end{array}}$$
(151)
$${\displaystyle \begin{array}{l}{V}_{12}^{\ast }(G)=\frac{\left(1-{\beta}_2\right){\pi}_2\theta }{\rho +\delta }G+\frac{\left(1-{\beta}_2-{\gamma}_2\right){\pi}_2{W}_0}{\rho }+\frac{{\left(\left(1-{\beta}_2\right){\pi}_2{\mu}_2+{a}_{12}{\lambda}_2\right)}^2}{2{\eta}_1\rho \left(1-{\gamma}_2-{\beta}_2\right)}\\ {}+\frac{\left({\pi}_1{\mu}_1+{a}_{11}{\lambda}_1\right)\left(1-{\beta}_2\right)\left({\pi}_2{\mu}_1+{a}_{12}{\lambda}_1\right)}{\rho {\eta}_1}\end{array}}$$
(152)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, M., Zhao, M., Han, C. et al. A strategic analysis of incorporating corporate environmental responsibility into managerial incentive design: a differential game approach. Environ Sci Pollut Res 30, 30385–30407 (2023). https://doi.org/10.1007/s11356-022-23350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23350-9

Keywords

Navigation