Log in

Phosphorus removal and recovery: state of the science and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  • Abdu N (2006) Soil-phosphorus extraction methodologies: a review. Afr J Agric Res 1(5):159–161

    Google Scholar 

  • Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R (2012) Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res 46(6):1889–1900

    Article  CAS  Google Scholar 

  • Addagada L (2020) Enhanced phosphate recovery using crystal-seed-enhanced struvite precipitation: process optimization with response surface methodology. J Hazard Toxic Radioact Waste 24(4):04020027

    Article  CAS  Google Scholar 

  • Ahmed S, Guo Y, Huang R, Li D, Tang P, Feng Y (2017) Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. J Environ Chem Eng 5(5):4649–4655

    Article  CAS  Google Scholar 

  • Ali Shah F, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:183752

    Article  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A (2016) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864

    Article  CAS  Google Scholar 

  • Almeida PV, Santos AF, Lopes DV, Gando-Ferreira LM, Quina MJ (2020) Novel adsorbents based on eggshell functionalized with iron oxyhydroxide for phosphorus removal from liquid effluents. J Water Process Eng 36:101248

    Article  Google Scholar 

  • Ammary BY (2004) Nutrients requirements in biological industrial wastewater treatment. Afr J Biotechnol 3(4):236–238

    Article  CAS  Google Scholar 

  • An T, Qin Y, Cheng H, Wu J, Su W, Meng G et al (2022) TiO2-WO3 activated weathered lignite coating phosphate fertilizer to improve longitudinal migration efficiency. J Clean Prod 351:131549

    Article  CAS  Google Scholar 

  • Anbia M, Salehi S (2014) Adsorption of methyl-orange from aqueous solution onto nanoporous silica materials. Sci Iran 21(6):2036–2048

    Google Scholar 

  • Anderson R, Brye KR, Greenlee L, Roberts TL, Gbur E (2021) Wastewater-recovered struvite effects on total extractable phosphorus compared with other phosphorus sources. Agrosyst Geosci Environ 4(2):e20154

    Google Scholar 

  • Anuar AN, Ab Halim MH, Rosman NH, Othman I, Harun H, Basri HF et al (2020) Microbial identification and extracellular polymeric substances characterization of aerobic granules developed in treating rubber processing wastewater. In: In: Valorisation of Agro-industrial Residues–Volume I: Biological Approaches. Springer, Cham, pp 257–286

    Chapter  Google Scholar 

  • Arenberg MR, Liang X, Arai Y (2020) Immobilization of agricultural phosphorus in temperate floodplain soils of Illinois, USA. Biogeochemistry 150(3):257–278

    Article  CAS  Google Scholar 

  • Arun J, Gopinath KP, Vigneshwar SS, Swetha A (2020) Sustainable and eco-friendly approach for phosphorus recovery from wastewater by hydrothermally carbonized microalgae: study on spent bio-char as fertilizer. J Water Process Eng 38:101567

    Article  Google Scholar 

  • Aziz A, Basheer F, Sengar A, Khan SU, Farooqi IH (2019) Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci Total Environ 686:681–708

    Article  CAS  Google Scholar 

  • Babaei M, Salehi S, Anbia M, Kazemipour M (2018) Improving CO2 adsorption capacity and CO2/CH4 selectivity with amine functionalization of MIL-100 and MIL-101. J Chem Eng Data 63(5):1657–1662

    Article  CAS  Google Scholar 

  • Bacelo H, Pintor AM, Santos SC, Boaventura RA, Botelho CM (2020) Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem Eng J 381:122566

    Article  CAS  Google Scholar 

  • Badi’ah HI, Seedeh F, Supriyanto G, Zaidan AH (2019) Synthesis of silver nanoparticles and the development in analysis method. IOP Conf Series: Earth Environ Sci 217:012005

    Google Scholar 

  • Bandar S, Anbia M, Salehi S (2021) Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. J Alloys Compd 851:156822

    Article  CAS  Google Scholar 

  • Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA (2016) A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chem Eng J 298:146–153

    Article  CAS  Google Scholar 

  • Barker P, Dold P (1996) Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Water Res 30(4):769–780

    Article  CAS  Google Scholar 

  • Baronti S, Vaccari F, Miglietta F, Calzolari C, Lugato E, Orlandini S et al (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44

    Article  CAS  Google Scholar 

  • Bartłomiej Cieslik PK (2016) A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J Clean Prod 142:1728–1740

    Article  CAS  Google Scholar 

  • Baruah A, Chaudhary V, Malik R, Tomer VK (2019) Nanotechnology based solutions for wastewater treatment. In: In: Nanotechnology in Water and Wastewater Treatment. Elsevier, Amsterdam, pp 337–368

    Chapter  Google Scholar 

  • Bassin J, Pronk M, Muyzer G, Kleerebezem R, Dezotti M, Van Loosdrecht M (2011) Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure. Appl Environ Microbiol 77(22):7942–7953

    Article  CAS  Google Scholar 

  • Beaudry JW, Sengupta S (2021) Phosphorus recovery from wastewater using pyridine-based ion-exchange resins: role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu2+). Water Environ Res 93(5):774–786

    Article  CAS  Google Scholar 

  • Besharatlou S, Anbia M, Salehi S (2021) Optimization of sulfate removal from aqueous media by surfactant-modified layered double hydroxide using response surface methodology. Mater Chem Phys 262:124322

    Article  CAS  Google Scholar 

  • Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41(7):1603–1613

    Article  CAS  Google Scholar 

  • Bousbih S, Errais E, Darragi F, Duplay J, Trabelsi-Ayadi M, Daramola MO, et al (2020) Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay. Environ Technol 42(21):3348–3359

  • Bradford SA, Segal E, Zheng W, Wang Q, Hutchins SR (2008) Reuse of concentrated animal feeding operation wastewater on agricultural lands. J Environ Qual 37(S5):S-97–S-115

    Article  CAS  Google Scholar 

  • Brassard P, Godbout S, Pelletier F, Raghavan V, Palacios JH (2018) Pyrolysis of switchgrass in an auger reactor for biochar production: a greenhouse gas and energy impacts assessment. Biomass Bioenergy 116:99–105

    Article  CAS  Google Scholar 

  • Bueno PDLC, Gillerman L, Gehr R, Oron G (2017) Nanotechnology for sustainable wastewater treatment and use for agricultural production: a comparative long-term study. Water Res 110:66–73

    Article  CAS  Google Scholar 

  • Bunce JT, Ndam E, Ofiteru ID, Moore A, Graham DW (2018) A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci 6:8

    Article  Google Scholar 

  • Bustillo-Lecompte CF, Mehrvar M (2015) Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manag 161:287–302

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Čapek P, Choma M, Tahovská K, Kaňa J, Kopáček J, Šantrůčková H (2021) Coupling the resource stoichiometry and microbial biomass turnover to predict nutrient mineralization and immobilization in soil. Geoderma 385:114884

    Article  CAS  Google Scholar 

  • Carrillo V, Fuentes B, Gómez G, Vidal G (2020) Characterization and recovery of phosphorus from wastewater by combined technologies. Rev Environ Sci Biotechnol 19:389–418

    Article  CAS  Google Scholar 

  • Chen Z, Luo J, Hang X, Wan Y (2018) Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment. J Membr Sci 547:51–63

    Article  CAS  Google Scholar 

  • Chen Z, Chen M, Koh KY, Neo W, Ong CN, Chen JP (2022) An optimized CaO2-functionalized alginate bead for simultaneous and efficient removal of phosphorous and harmful cyanobacteria. Sci Total Environ 806:150382

    Article  CAS  Google Scholar 

  • Chiavola A, Bongirolami S, Di Francesco G (2020) Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater. Water Sci Technol 81(7):1329–1335

    Article  CAS  Google Scholar 

  • Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4(4):10

    Google Scholar 

  • Cicek H, Bhullar GS, Mandloi LS, Andres C, Riar AS (2020) Partial acidulation of rock phosphate for increased productivity in organic and smallholder farming. Sustainability 12(2):607

    Article  CAS  Google Scholar 

  • Cong W-F, Suriyagoda L D, Lambers H (2020) Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends Plant Sci 25(10):967–975

  • Cooper J, Carliell-Marquet C (2013) A substance flow analysis of phosphorus in the UK food production and consumption system. Resour Conserv Recycl 74:82–100

    Article  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305

    Article  Google Scholar 

  • Cornel P, Schaum C (2009) Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 59(6):1069–1076

    Article  CAS  Google Scholar 

  • Cueto LA, Hansen AM (2020) Phosphorus recovery by ion exchange in a solid carbonate: modeling of the process. Environ Sci Pollut Res 27(14):15984–15993

    Article  CAS  Google Scholar 

  • Dai H-H, Gao J-F, Wang Z-Q, Zhao Y-F, Zhang D (2020) Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. J Clean Prod 256:120402

    Article  CAS  Google Scholar 

  • Davis ML (2020) Water and wastewater engineering: design principles and practice. McGraw-Hill Education, New York

    Google Scholar 

  • Delgadillo-Velasco L, Hernández-Montoya V, Rangel-Vázquez NA, Cervantes FJ, Montes-Morán MA, del Rosario M-VM (2018) Screening of commercial sorbents for the removal of phosphates from water and modeling by molecular simulation. J Mol Liq 262:443–450

    Article  CAS  Google Scholar 

  • Deng Y, Zhang T, Sharma BK, Nie H (2019) Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system. Sci Total Environ 646:1140–1154

    Article  CAS  Google Scholar 

  • Deng Y, Zhang T, Clark J, Aminabhavi T, Kruse A, Tsang DC et al (2020) Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem 22(17):5628–5638

    Article  CAS  Google Scholar 

  • Deng W, Zhang D, Zheng X, Ye X, Niu X, Lin Z et al (2021) Adsorption recovery of phosphate from waste streams by Ca/Mg-biochar synthesis from marble waste, calcium-rich sepiolite and bagasse. J Clean Prod 288:125638

    Article  CAS  Google Scholar 

  • Di H, Cameron K (2002) Nitrate leaching and pasture production from different nitrogen sources on a shallow stoney soil under flood-irrigated dairy pasture. Soil Res 40(2):317–334

    Article  CAS  Google Scholar 

  • Di Capua F, de Sario S, Ferraro A, Petrella A, Race M, Pirozzi F et al (2022) Phosphorous removal and recovery from urban wastewater: current practices and new directions. Sci Total Environ 823:153750

    Article  CAS  Google Scholar 

  • Do QC, Ko S-O, Jang A, Kim Y, Kang S (2020) Incorporation of iron (oxyhydr) oxide nanoparticles with expanded graphite for phosphorus removal and recovery from aqueous solutions. Chemosphere 259:127395

    Article  CAS  Google Scholar 

  • Dorofeev A, Nikolaev YA, Mardanov A, Pimenov N (2020) Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol 56(1):1–14

    Article  CAS  Google Scholar 

  • El Wali M, Golroudbary SR, Kraslawski A (2019) Impact of recycling improvement on the life cycle of phosphorus. Chin J Chem Eng 27(5):1219–1229

    Article  CAS  Google Scholar 

  • Fan Y, Lu S, He M, Yang L, Hu W, Yang Z et al (2021) Long-term through fall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma 404:115309

    Article  CAS  Google Scholar 

  • Filipe CD, Daigger GT, Grady CL Jr (2001) pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms. Water Environ Res 73(2):223–232

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  Google Scholar 

  • Fuchslueger L, Zezula D, Püspök J, Van Langenhove L, Margalef O, Canarini A, et al (2020) Controls over phosphorus mineralization and immobilization rates in different tropical soils. In: EGU General Assembly Conference Abstracts Controls over phosphorus mineralization and immobilization rates in different tropical soils 15473

  • Furuya K, Hafuka A, Kuroiwa M, Satoh H, Watanabe Y, Yamamura H (2017) Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration. Water Res 124:521–526

    Article  CAS  Google Scholar 

  • Gao S, Wang C, Pei Y (2013) Comparison of different phosphate species adsorption by ferric and alum water treatment residuals. J Environ Sci 25(5):986–992

    Article  CAS  Google Scholar 

  • Gao S, DeLuca TH, Cleveland CC (2019) Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Sci Total Environ 654:463–472

    Article  CAS  Google Scholar 

  • Gao J, Zhao J, Zhang J, Li Q, Gao J, Cai M et al (2020) Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands. J Clean Prod 261:121110

    Article  CAS  Google Scholar 

  • Garske B, Stubenrauch J, Ekardt F (2020) Sustainable phosphorus management in European agricultural and environmental law. Rev Eur Comp Int Environ Law 29(1):107–117

    Article  Google Scholar 

  • Geng X, Lv S, Yang J, Cui S, Zhao Z (2021) Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics. J Environ Manag 280:111749

    Article  CAS  Google Scholar 

  • Ghodake G, Shinde S, Saratale GD, Kadam A, Saratale RG, Kim D-Y (2020) Water purification filter prepared by layer-by-layer assembly of paper filter and polypropylene-polyethylene woven fabrics decorated with silver nanoparticles. Fibers Polym 21(4):751–761

    Article  CAS  Google Scholar 

  • Ghorai A, Mandal AK, Banerjee S (2020) Synthesis and characterization of new phosphorus containing sulfonated polytriazoles for proton exchange membrane application. J Polym Sci 58(2):263–279

    Article  CAS  Google Scholar 

  • Ghorbani M, Seyedin O, Aghamohammadhassan M (2020) Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: a review. J Environ Manag 254:109814

    Article  CAS  Google Scholar 

  • Ghosh S, Lobanov S, Lo VK (2019) An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Environ Sci Pollut Res 26(19):19063–19077

    Article  CAS  Google Scholar 

  • Goff LP (2019) Precision Agriculture’s Impact on Nutrient Management in Agronomic Crops

  • Goh P, Ismail A (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80

    Article  CAS  Google Scholar 

  • Gong B, Wang Y, Wang J, Huang W, Zhou J, He Q (2018) Intensified nitrogen and phosphorus removal by embedding electrolysis in an anaerobic–anoxic–oxic reactor treating low carbon/nitrogen wastewater. Bioresour Technol 256:562–565

    Article  CAS  Google Scholar 

  • Grzmil B, Wronkowski J (2006) Removal of phosphates and fluorides from industrial wastewater. desalination 189(1-3):261–268

    Article  CAS  Google Scholar 

  • Guaya D, Hermassi M, Valderrama C, Farran A, Cortina JL (2016) Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. J Environ Chem Eng 4(3):3519–3526

    Article  CAS  Google Scholar 

  • Guo Y, Li Y-Y (2020) Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor. Water Res 187:116444

    Article  CAS  Google Scholar 

  • Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111

    Article  CAS  Google Scholar 

  • Hashim KS, Idowu IA, Jasim N, Al Khaddar R, Shaw A, Phipps D et al (2018) Removal of phosphate from river water using a new baffle plates electrochemical reactor. MethodsX 5:1413–1418

    Article  Google Scholar 

  • Hassanimarand M, Anbia M, Salehi S (2020) Removal of Acid Blue 92 by using amino-functionalized silica-pillared clay as a new nano-adsorbent: equilibrium, kinetic and thermodynamic parameters. ChemistrySelect 5(20):6141–6152

    Article  CAS  Google Scholar 

  • Hatibu AA, Shitindi MJ, Marwa EM (2020) Assessment of phosphorous release from bat guano with respect to their use as organic fertilizers in crop production. Assessment

  • Hauda JK, Safferman SI, Ghane E (2020) Adsorption media for the removal of soluble phosphorus from subsurface drainage water. Int J Environ Res Public Health 17(20):7693

    Article  CAS  Google Scholar 

  • Holdren J (2011) The national nanotechnology initiative strategic plan report at subcommittee on nanoscale science, engineering and technology of committee on technology. National Science Technology Council (NSTC), Arlington

    Google Scholar 

  • Hou Q, Meng P, Pei H, Hu W, Chen Y (2018) Phosphorus adsorption characteristics of alum sludge: adsorption capacity and the forms of phosphorus retained in alum sludge. Mater Lett 229:31–35

    Article  CAS  Google Scholar 

  • Hu M, Fan B, Wang H, Qu B, Zhu S (2016) Constructing the ecological sanitation: a review on technology and methods. J Clean Prod 125:1–21

    Article  Google Scholar 

  • Hu A, Ren G, Che J, Guo Y, Ye J, Zhou S (2020) Phosphate recovery with granular acid-activated neutralized red mud: fixed-bed column performance and breakthrough curve modelling. J Environ Sci 90:78–86

    Article  Google Scholar 

  • Hua L, Chen Y, Wu W (2012) Impacts upon soil quality and plant growth of bamboo charcoal addition to composted sludge. Environ Technol 33(1):61–68

    Article  CAS  Google Scholar 

  • Huang W, Zhang Y, Li D (2017) Adsorptive removal of phosphate from water using mesoporous materials: a review. J Environ Manag 193:470–482

    Article  CAS  Google Scholar 

  • Huang X, Guida S, Jefferson B, Soares A (2020) Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater. NPJ Clean Water 3(1):1–10

    Article  Google Scholar 

  • Ighalo JO, Adeniyi AG (2020) Adsorption of pollutants by plant bark derived adsorbents: an empirical review. J Water Process Eng 35:101228

    Article  Google Scholar 

  • Parnian l, Izadi P, Eldyasti A (2020a) Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review. Rev Environ Sci Biotechnol 19(3):561–593

    Article  CAS  Google Scholar 

  • Izadi P, Izadi P, Eldyasti A (2020b) Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: a review. Rev Environ Sci Bio/Technol 1–33

  • Jarvie HP, Neal C, Withers PJ (2006) Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Sci Total Environ 360(1-3):246–253

    Article  CAS  Google Scholar 

  • Jeong Y, Cho K, Kwon EE, Tsang YF, Rinklebe J, Park C (2017) Evaluating the feasibility of pyrophyllite-based ceramic membranes for treating domestic wastewater in anaerobic ceramic membrane bioreactors. Chem Eng J 328:567–573

    Article  CAS  Google Scholar 

  • Jia Z, Zeng W, Xu H, Li S, Peng Y (2020) Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar. Process Saf Environ Prot 140:221–232

    Article  CAS  Google Scholar 

  • Jiménez J, Bru S, Ribeiro MP, Clotet J (2016) Phosphate: from stardust to eukaryotic cell cycle control. Int Microbiol: Off J Spanish Soc Microbiol 19(3):133–141

    Google Scholar 

  • Jupp AR, Beijer S, Narain GC, Schipper W, Slootweg JC (2021) Phosphorus recovery and recycling–closing the loop. Chem Soc Rev

  • Kamali N, Mehrabadi AR, Mirabi M, Zahed MA (2020a) Adsorbent production from ethanol industry waste for phosphorus removal: investigation in production temperature and experimental conditions effects on adsorption process (in Persian). In: In: The 10th National Conference on Environment, Energy and Sustainable Natural Resources. CIVILICA, Tehran

    Google Scholar 

  • Kamali N, Mehrabadi AR, Mirabi M, Zahed MA (2020b) Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute. Front Environ Sci Eng 14(4):70

    Article  CAS  Google Scholar 

  • Kamali N, Mehrabadi AR, Mirabi M, Zahed MA (2020c) Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute. Front Environ Sci Eng 14(4):1–16

    Article  CAS  Google Scholar 

  • Kamali N, Mehrabadi AR, Mirabi M, Zahed MA (2021) Comparison of micro and nano MgO-functionalized vinasse biochar in phosphate removal: micro-nano particle development, RSM optimization, and potential fertilizer. J Water Process Eng 39:101741

    Article  Google Scholar 

  • Karimaian KA, Amrane A, Kazemian H, Panahi R, Zarrabi M (2013) Retention of phosphorous ions on natural and engineered waste pumice: characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study. Appl Surf Sci 284:419–431

    Article  CAS  Google Scholar 

  • Khan MD, Chottitisupawong T, Vu HH, Ahn JW, Kim GM (2020) Removal of phosphorus from an aqueous solution by nanocalcium hydroxide derived from waste bivalve seashells: mechanism and kinetics. ACS omega 5(21):12290–12301

    Article  CAS  Google Scholar 

  • Kim WK, Sung YK, Yoo HS, Kim JT (2015) Optimization of coagulation/flocculation for phosphorus removal from activated sludge effluent discharge using an online charge analyzing system titrator (CAST). J Ind Eng Chem 21:269–277

    Article  CAS  Google Scholar 

  • Kończak M, Huber M (2022) Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. J Clean Prod 331:129994

    Article  CAS  Google Scholar 

  • Kong L, Han M, Shih K, Su M, Diao Z, Long J et al (2018) Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus. Environ Pollut 233:698–705

    Article  CAS  Google Scholar 

  • Krishnan KA, Haridas A (2008) Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. J Hazard Mater 152(2):527–535

    Article  CAS  Google Scholar 

  • Kumar A, Bhattacharya T (2021) Biochar: a sustainable solution. Environ Dev Sustain 23(5):6642–6680

    Article  Google Scholar 

  • Kumar R, Pal P (2015) Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut Res 22(22):17453–17464

    Article  CAS  Google Scholar 

  • Kumar P, Sudha S, Chand S, Srivastava VC (2010) Phosphate removal from aqueous solution using coir-pith activated carbon. Sep Sci Technol 45(10):1463–1470

    Article  CAS  Google Scholar 

  • Kunhikrishnan A, Rahman MA, Lamb D, Bolan NS, Saggar S, Surapaneni A et al (2022) Rare earth elements (REE) for the removal and recovery of phosphorus: a review. Chemosphere 286:131661

    Article  CAS  Google Scholar 

  • Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA (2009) Phosphorus recovery from wastewater by struvite crystallization: a review. Crit Rev Environ Sci Technol 39(6):433–477

    Article  CAS  Google Scholar 

  • Le TT, Cabaltica AD, Bui VM (2014) Membrane separations in dairy processing. J Food Res Technol 2(1):1–14

    Google Scholar 

  • Lei Y, Saakes M, van der Weijden RD, Buisman CJ (2020) Electrochemically mediated calcium phosphate precipitation from phosphonates: implications on phosphorus recovery from non-orthophosphate. Water Res 169:115206

    Article  CAS  Google Scholar 

  • Levine RS (2020) Pyrophosphates in toothpaste: a retrospective and reappraisal. Br Dent J 229(10):687–689

    Article  Google Scholar 

  • Li B, Boiarkina I, Young B, Yu W, Singhal N (2016a) Prediction of future phosphate rock: a demand based model.

  • Li R, Wang JJ, Zhou B, Awasthi MK, Ali A, Zhang Z et al (2016b) Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour Technol 215:209–214

    Article  CAS  Google Scholar 

  • Li Z, Wang X, Ma B, Wang S, Zheng D, She Z et al (2017) Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresour Technol 238:361–368

    Article  CAS  Google Scholar 

  • Li R, Wang JJ, Zhang Z, Awasthi MK, Du D, Dang P et al (2018) Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling. Sci Total Environ 642:526–536

    Article  CAS  Google Scholar 

  • Li Y, Fu F, Cai W, Tang B (2019) Synergistic effect of mesoporous feroxyhyte nanoparticles and Fe (II) on phosphate immobilization: adsorption and chemical precipitation. Powder Technol 345:786–795

    Article  CAS  Google Scholar 

  • Li H, Ge W, Zhang J, Kasomo RM, Leng J, Weng X et al (2020a) Control foaming performance of phosphate rocks used for wet-process of phosphoric acid production by phosphoric acid. Hydrometallurgy 195:105364

    Article  CAS  Google Scholar 

  • Li H, Zhong Y, Huang H, Tan Z, Sun Y, Liu H (2020b) Simultaneous nitrogen and phosphorus removal by interactions between phosphate accumulating organisms (PAOs) and denitrifying phosphate accumulating organisms (DPAOs) in a sequencing batch reactor. Sci Total Environ 744:140852

    Article  CAS  Google Scholar 

  • Li X, **e Y, Jiang F, Wang B, Hu Q, Tang Y et al (2020c) Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: behaviors and mechanisms. Sci Total Environ 709:136123

    Article  CAS  Google Scholar 

  • Li B, Xue Q, Wan Y, Liu L, Fu J, Yu Y et al (2021) Substantial and rapid phosphorous adsorption by calcium modified mesoporous silicon micropheres. Chem Eng J Adv 7:100124

    Article  CAS  Google Scholar 

  • Lin H, Gan J, Rajendran A, Reis CER, Hu B (2015) Phosphorus removal and recovery from digestate after biogas production. In: Biofuels-status and perspective. IntechOpen

  • Lin J, Zhan Y, Wang H, Chu M, Wang C, He Y et al (2017) Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide. Chem Eng J 309:118–129

    Article  CAS  Google Scholar 

  • Liu Y, Tay J-H (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22(7):533–563

    Article  CAS  Google Scholar 

  • Liu S-B, Tan X-F, Liu Y-G, Gu Y-L, Zeng G-M, Hu X-J et al (2016) Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. RSC Adv 6(7):5871–5880

    Article  CAS  Google Scholar 

  • Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu H-Q et al (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol 241:1127–1137

    Article  CAS  Google Scholar 

  • Liu R, Hao X, Chen Q, Li J (2019) Research advances of Tetrasphaera in enhanced biological phosphorus removal: a review. Water Res 166:115003

    Article  CAS  Google Scholar 

  • Liu X, Yuan Z, Liu X, Zhang Y, Hua H, Jiang S (2020) Historic trends and future prospects of waste generation and recycling in China’s phosphorus cycle. Environ Sci Technol 54(8):5131–5139

    Article  CAS  Google Scholar 

  • Liu H, Shan J, Chen Z, Lichtfouse E (2021a) Efficient recovery of phosphate from simulated urine by Mg/Fe bimetallic oxide modified biochar as a potential resource. Sci Total Environ 784:147546

    Article  CAS  Google Scholar 

  • Liu H, Zeng W, Fan Z, Li J, Zhan M, Peng Y (2021b) Effect of iron on enhanced nitrogen removal from wastewater by sulfur autotrophic denitrification coupled to heterotrophic denitrification under different substrate ratios. Chem Eng J 421:129828

    Article  CAS  Google Scholar 

  • Lizarralde I, Fernández-Arévalo T, Manas A, Ayesa E, Grau P (2019) Model-based optimization of phosphorus management strategies in Sur WWTP, Madrid. Water Res 153:39–52

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44(8):847–907

    Article  CAS  Google Scholar 

  • Long F, Gong J-L, Zeng G-M, Chen L, Wang X-Y, Deng J-H et al (2011) Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem Eng J 171(2):448–455

    Article  CAS  Google Scholar 

  • Lu C, Kim T-H, Bendix J, Abdelmoula M, Ruby C, Nielsen UG et al (2020) Stability of magnetic LDH composites used for phosphate recovery. J Colloid Interface Sci 580:660–668

    Article  CAS  Google Scholar 

  • Macintosh KA, Mayer BK, McDowell RW, Powers SM, Baker LA, Boyer TH et al (2018) Managing diffuse phosphorus at the source versus at the sink. Environ Sci Technol 52(21):11995–12009

    Article  CAS  Google Scholar 

  • Madadi R, Zahed MA, Pourbabaee AA, Tabatabaei M, Naghavi MR (2021) Simultaneous phycoremediation of petrochemical wastewater and lipid production by Chlorella vulgaris. SN Appl Sci 3(4):1–10

    Article  CAS  Google Scholar 

  • Mahaninia MH, Wilson LD (2017) Phosphate uptake studies of cross-linked chitosan bead materials. J Colloid Interface Sci 485:201–212

    Article  CAS  Google Scholar 

  • Mäkelä PS, Wasonga DO, Solano Hernandez A, Santanen A (2020) Seedling growth and phosphorus uptake in response to different phosphorus sources. Agronomy 10(8):1089

    Article  CAS  Google Scholar 

  • Mandeep PS (2020) Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 11:590631

    Article  CAS  Google Scholar 

  • Mann R, Bavor H (1993) Phosphorus removal in constructed wetlands using gravel and industrial waste substrata. Water Sci Technol 27(1):107–113

    Article  CAS  Google Scholar 

  • Mannina G, Capodici M, Cosenza A, Di Trapani D, Viviani G (2016) Sequential batch membrane bio-reactor for wastewater treatment: the effect of increased salinity. Bioresour Technol 209:205–212

    Article  CAS  Google Scholar 

  • Marques R, Ribera-Guardia A, Santos J, Carvalho G, Reis MA, Pijuan M et al (2018) Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res 137:262–272

    Article  CAS  Google Scholar 

  • Martin BD, De Kock L, Gallot M, Guery E, Stanowski S, MacAdam J et al (2018) Quantifying the performance of a hybrid anion exchanger/adsorbent for phosphorus removal using mass spectrometry coupled with batch kinetic trials. Environ Technol 39(18):2304–2314

    Article  CAS  Google Scholar 

  • Matuštík J, Hnátková T, Kočí V (2020) Life cycle assessment of biochar-to-soil systems: a review. J Clean Prod 259:120998

    Article  CAS  Google Scholar 

  • Mazani M, Aghapour Aktij S, Rahimpour A, Tavajohi Hassan Kiadeh N (2020) Cu-BTC metal− organic framework modified membranes for landfill leachate treatment. Water 12(1):91

    Article  CAS  Google Scholar 

  • Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ (2015) Technologies to recover nutrients from waste streams: a critical review. Crit Rev Environ Sci Technol 45(4):385–427

    Article  Google Scholar 

  • Mirhosseinian NS, Anbia M, Salehi S (2020) Preparation and characterization of superhydrophobic melamine and melamine-derived carbon sponges modified with reduced graphene oxide–TiO2 nanocomposite as oil absorbent materials. J Mater Sci 55(4):1536–1552

    Article  CAS  Google Scholar 

  • Mitrogiannis D, Psychoyou M, Koukouzas N, Tsoukalas N, Palles D, Kamitsos E et al (2018) Phosphate recovery from real fresh urine by Ca(OH)2 treated natural zeolite. Chem Eng J 347:618–630

    Article  CAS  Google Scholar 

  • Mittal A (2011) Biological wastewater treatment. Water Today 1:32–44

    Google Scholar 

  • Mor S, Chhoden K, Negi P, Ravindra K (2017) Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater. Environ Nanotechnol Monit Manag 7:15–23

    Google Scholar 

  • Mosa A, El-Ghamry A, Tolba M (2018) Functionalized biochar derived from heavy metal rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere 198:351–363

    Article  CAS  Google Scholar 

  • Mosse K, Patti A, Christen EW, Cavagnaro T (2011) Winery wastewater quality and treatment options in Australia. Aust J Grape Wine Res 17(2):111–122

    Article  CAS  Google Scholar 

  • Muisa N, Nhapi I, Ruziwa W, Manyuchi MM (2020) Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: a review. J Water Process Eng 35:101187

    Article  Google Scholar 

  • Munir M, Li B, Mardon I, Young B, Baroutian S (2019) Integrating wet oxidation and struvite precipitation for sewage sludge treatment and phosphorus recovery. J Clean Prod 232:1043–1052

    Article  CAS  Google Scholar 

  • Mwangi E, Ngamau C, Wesonga J, Karanja E, Musyoka M, Matheri F et al (2020) Managing phosphate rock to improve nutrient uptake, phosphorus use efficiency, and carrot yields. J Soil Sci Plant Nutr 20(3):1350–1365

    Article  CAS  Google Scholar 

  • Nakarmi A, Bourdo SE, Ruhl L, Kanel S, Nadagouda M, Alla PK et al (2020) Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions. J Environ Manag 272:111048

    Article  CAS  Google Scholar 

  • Nancharaiah Y, Mohan SV, Lens P (2016) Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol 215:173–185

    Article  CAS  Google Scholar 

  • Nazarian R, Desch RJ, Thiel SW (2021) Kinetics and equilibrium adsorption of phosphate on lanthanum oxide supported on activated carbon. Colloids Surf A Physicochem Eng Asp 624:126813

    Article  CAS  Google Scholar 

  • Ndoung OCN, de Figueiredo CC, Ramos MLG (2021) A sco** review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon 7(12):e08473

    Article  CAS  Google Scholar 

  • Nguyen TT, Ngo HH, Guo W (2013) Pilot scale study on a new membrane bioreactor hybrid system in municipal wastewater treatment. Bioresour Technol 141:8–12

    Article  CAS  Google Scholar 

  • Nguyen DD, Ngo HH, Guo W, Nguyen TT, Chang SW, Jang A et al (2016) Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater? Sci Total Environ 563:549–556

    Article  CAS  Google Scholar 

  • Nguyen TMP, Van HT, Nguyen TV, Ha L, Vu XH, Pham T et al (2020) Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Sci Rep 10(1):1–13

    CAS  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL et al (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41(11):2271–2300

    Article  CAS  Google Scholar 

  • Oleszkiewicz J, Kruk D, Devlin T, Lashkarizadeh M, Yuan Q (2015) Options for improved nutrient removal and recovery from municipal wastewater in the Canadian context. Environ Technol 20:132

    Google Scholar 

  • Ou E, Zhou J, Mao S, Wang J, **a F, Min L (2007) Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids Surf A Physicochem Eng Asp 308(1-3):47–53

    Article  CAS  Google Scholar 

  • Ownby M, Desrosiers D-A, Vaneeckhaute C (2021) Phosphorus removal and recovery from wastewater via hybrid ion exchange nanotechnology: a study on sustainable regeneration chemistries. npj Clean. Water 4(1):1–8

    Google Scholar 

  • Pal M, Yesankar PJ, Dwivedi A, Qureshi A (2020) Biotic control of harmful algal blooms (HABs): a brief review. J Environ Manag 268:110687

    Article  CAS  Google Scholar 

  • Paltrinieri L, Poltorak L, Chu L, Puts T, van Baak W, Sudhölter EJ et al (2018) Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. React Funct Polym 133:126–135

    Article  CAS  Google Scholar 

  • Patel H, Vashi R (2015) Characterization and treatment of textile wastewater. Elsevier, Amsterdam

    Google Scholar 

  • Peng L, Dai H, Wu Y, Peng Y, Lu X (2018) A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197:768–781

    Article  CAS  Google Scholar 

  • Penn C, Chagas I, Klimeski A, Lyngsie G (2017) A review of phosphorus removal structures: How to assess and compare their performance. Water 9(8):583

    Article  CAS  Google Scholar 

  • Photiou P, Koutsokeras L, Constantinides G, Koutinas M, Vyrides I (2021) Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica. J Clean Prod 278:123294

    Article  CAS  Google Scholar 

  • Pohanish RP (2014) Sittig's handbook of pesticides and agricultural chemicals. William Andrew, Los Angeles

    Google Scholar 

  • Pradel M, Aissani L (2019) Environmental impacts of phosphorus recovery from a “product” life cycle assessment perspective: allocating burdens of wastewater treatment in the production of sludge-based phosphate fertilizers. Sci Total Environ 656:55–69

    Article  CAS  Google Scholar 

  • Qian T, Wang L, Le C, Zhou Y (2019) Low-temperature-steam activation of phosphorus in biochar derived from enhanced biological phosphorus removal (EBPR) sludge. Water Res 161:202–210

    Article  CAS  Google Scholar 

  • Qin Z, Shober AL, Scheckel KG, Penn CJ, Turner KC (2018) Mechanisms of phosphorus removal by phosphorus sorbing materials. J Environ Qual 47(5):1232–1241

    Article  CAS  Google Scholar 

  • Qiu H, Yang L, Liu F, Zhao Y, Liu L, Zhu J et al (2017) Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine. Environ Sci Pollut Res 24(30):23694–23703

    Article  CAS  Google Scholar 

  • Ramasahayam SK, Guzman L, Gunawan G, Viswanathan T (2014) A comprehensive review of phosphorus removal technologies and processes. J Macromol Sci A 51(6):538–545

    Article  CAS  Google Scholar 

  • Randall D, Naidoo V (2018) Urine: The liquid gold of wastewater. J Environ Chem Eng 6(2):2627–2635

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia A (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12(4):1443–1460

    Article  CAS  Google Scholar 

  • Rodrigues LA, da Silva MLCP (2010) Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method. Desalination 263(1-3):29–35

    Article  CAS  Google Scholar 

  • Rukman NK, Jannatin M, Supriyanto G, Fahmi MZ, Ibrahim WAW (2019) GO-Fe3O4 Nanocomposite from coconut shell: synthesis and characterization. IOP Conf Series: Earth Environ Sci 217:012008

    Google Scholar 

  • Sadeghi SH, Hazbavi Z, Harchegani MK (2016) Controllability of runoff and soil loss from small plots treated by vinasse-produced biochar. Sci Total Environ 541:483–490

    Article  CAS  Google Scholar 

  • Safirzadeh S, Chorom M, Enayatizamir N (2019) Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.). Soil Res 57(4):333–341

    Article  Google Scholar 

  • Salehi S, Anbia M (2017) Characterization of CPs/Ca-exchanged FAU- and LTA-type zeolite nanocomposites and their selectivity for CO2 and N2 adsorption. J Phys Chem Solids 110:116–128

    Article  CAS  Google Scholar 

  • Salehi S, Hosseinifard M (2020a) Highly efficient removal of phosphate by lanthanum modified nanochitosan-hierarchical ZSM-5 zeolite nanocomposite: characteristics and mechanism. Cellulose 27(8):4637–4664

    Article  CAS  Google Scholar 

  • Salehi S, Hosseinifard M (2020b) Optimized removal of phosphate and nitrate from aqueous media using zirconium functionalized nanochitosan-graphene oxide composite. Cellulose 27(15):8859–8883

    Article  CAS  Google Scholar 

  • Salehi S, Hosseinifard M (2020c) Removal of phosphate from aqueous media by lanthanum modified nanochitosan. J Adv Mater Technol 9(2):9–19

    Google Scholar 

  • Salehi S, Hosseinifard M (2021) Optimization of nitrate removal from aqueous solutions with ZSM hierarchical zeolite modified with amine using response surface method. J Adv Mater Technol 10(1):13–23

    Google Scholar 

  • Salehi S, Habibi MJ, Anbia M (2016) Synthesis and characterization of amine-modified mesoporous SBA-15 for carbon dioxide sequestration at high pressure and room temperature (RESEARCH NOTE). Int J Eng 29(10):1341–1346

    Google Scholar 

  • Salehi S, Alijani S, Anbia M (2020) Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int J Biol Macromol 164:105–120

    Article  CAS  Google Scholar 

  • Sang W, Mei L, Hao S, Li D, Li X, Zhang Q et al (2020) Na@ La-modified zeolite particles for simultaneous removal of ammonia nitrogen and phosphate from rejected water: performance and mechanism. Water Sci Technol 82(12):2975–2989

    Article  CAS  Google Scholar 

  • Sebiawu GE, Amponsah D, Nagai H (2014) Determination of sulphate and phosphate levels in selected toothpaste found on the Ghanaian market. Int J Eng Res 3(6)

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30(7):383–406

    Article  CAS  Google Scholar 

  • Sena M, Seib M, Noguera DR, Hicks A (2021) Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment. J Clean Prod 280:124222

    Article  CAS  Google Scholar 

  • Seow YX, Tan YH, Mubarak NM, Kansedo J, Khalid M, Ibrahim ML et al (2022) A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J Environ Chem Eng 10(1):107017

    Article  CAS  Google Scholar 

  • Shin H, Tiwari D, Kim D-J (2020) Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. J Water Process Eng 37:101484

    Article  Google Scholar 

  • Shinde SK, Mohite SM, Kadam AA, Yadav HM, Ghodake GS, Rajpure KY et al (2019) Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance. J Electroanal Chem 850:113433

    Article  CAS  Google Scholar 

  • Shukla S, Rajta A, Setia H, Bhatia R (2020) Simultaneous nitrification–denitrification by phosphate accumulating microorganisms. World J Microbiol Biotechnol 36(10):1–17

    Article  CAS  Google Scholar 

  • Si Q, Zhu Q, **ng Z (2017) Design and synthesis of a novel silicate material from red mud for simultaneous removal of nitrogen and phosphorus in wastewater. ACS Sustain Chem Eng 5(12):11422–11432

    Article  CAS  Google Scholar 

  • Sim DHH, Tan IAW, Lim LLP, Hameed BH (2021) Encapsulated biochar-based sustained release fertilizer for precision agriculture: a review. J Clean Prod 303:127018

    Article  CAS  Google Scholar 

  • Siyal AA, Shamsuddin MR, Low A, Rabat NE (2020) A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manag 254:109797

    Article  CAS  Google Scholar 

  • Song M, Li M (2019) Adsorption and regeneration characteristics of phosphorus from sludge dewatering filtrate by magnetic anion exchange resin. Environ Sci Pollut Res 26(33):34233–34247

    Article  CAS  Google Scholar 

  • Speight JG (2017) Industrial inorganic chemistry. Environmental inorganic chemistry for engineers, Kidlington, pp 111–169

    Google Scholar 

  • Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH (2017) A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front Microbiol 8:718

    Article  Google Scholar 

  • Talboys PJ, Heppell J, Roose T, Healey JR, Jones DL, Withers PJ (2016) Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 401(1-2):109–123

    Article  CAS  Google Scholar 

  • Tang J, Wu Y, Esquivel-Elizondo S, Sørensen SJ, Rittmann BE (2018) How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol 36(11):1171–1182

    Article  CAS  Google Scholar 

  • Taweekarn T, Wongniramaikul W, Choodum A (2022) Removal and recovery of phosphate using a novel calcium silicate hydrate composite starch cryogel. J Environ Manag 301:113923

    Article  CAS  Google Scholar 

  • Thers H, Djomo SN, Elsgaard L, Knudsen MT (2019) Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel. Sci Total Environ 671:180–188

    Article  CAS  Google Scholar 

  • Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9(3):232–248

    Article  CAS  Google Scholar 

  • Tomei MC, Stazi V, Daneshgar S, Capodaglio AG (2020) Holistic approach to phosphorus recovery from urban wastewater: enhanced biological removal combined with precipitation. Sustainability 12(2):575

    Article  CAS  Google Scholar 

  • Tsitouras A, Al-Ghussain N, Delatolla R (2021) Two moving bed biofilm reactors in series for carbon, nitrogen, and phosphorous removal from high organic wastewaters. J Water Process Eng 41:102088

    Article  Google Scholar 

  • Tuszynska A, Czerwionka K, Obarska-Pempkowiak H (2021) Phosphorus concentration and availability in raw organic waste and post fermentation products. J Environ Manag 278:111468

    Article  CAS  Google Scholar 

  • Uusitalo V, Leino M (2019) Neutralizing global warming impacts of crop production using biochar from side flows and buffer zones: a case study of oat production in the boreal climate zone. J Clean Prod 227:48–57

    Article  CAS  Google Scholar 

  • Uygur A, Kargı F (2004) Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzym Microb Technol 34(3-4):313–318

    Article  CAS  Google Scholar 

  • Vieira JDS (2007) Transformações biogeoquímicas na bacia hidrográfica do Rio Lis

  • Vunain E, Mishra A, Mamba B (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586

    Article  CAS  Google Scholar 

  • Vunnava VSG, Singh S (2019) Entropy generation analysis of sequential anaerobic digester ion-exchange technology for phosphorus extraction from waste. J Clean Prod 221:55–62

    Article  CAS  Google Scholar 

  • Wan W, He D, Xue Z (2017) Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15. Ecol Eng 99:199–208

    Article  Google Scholar 

  • Wan W, Wang Y, Tan J, Qin Y, Zuo W, Wu H et al (2020) Alkaline phosphatase-harboring bacterial community and multiple enzyme activity contribute to phosphorus transformation during vegetable waste and chicken manure composting. Bioresour Technol 297:122406

    Article  CAS  Google Scholar 

  • Wang L-Y, Gu Y-H, Zhou Q-Z, Ma G-H, Wan Y-H, Su Z-G (2006) Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B: Biointerfaces 50(2):126–135

    Article  CAS  Google Scholar 

  • Wang X, Lü S, Gao C, Feng C, Xu X, Bai X et al (2016) Recovery of ammonium and phosphate from wastewater by wheat straw-based amphoteric adsorbent and reusing as a multifunctional slow-release compound fertilizer. ACS Sustain Chem Eng 4(4):2068–2079

    Article  CAS  Google Scholar 

  • Wang Q, Li J-s, Tang P, Fang L, Poon CS (2018) Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. J Clean Prod 181:717–725

    Article  CAS  Google Scholar 

  • Wang B, Ma Y, Lee X, Wu P, Liu F, Zhang X et al (2021a) Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci Total Environ 758:143664

    Article  CAS  Google Scholar 

  • Wang Q, Ding J, **e H, Hao D, Du Y, Zhao C et al (2021b) Phosphorus removal performance of microbial-enhanced constructed wetlands that treat saline wastewater. J Clean Prod 288:125119

    Article  CAS  Google Scholar 

  • Wang Z, Li W, Zhu J, Wang D, Meng H, Wang H et al (2021c) Simultaneous adsorption of phosphate and zinc by lanthanum modified zeolite. Environ Technol Innov 24:101906

    Article  CAS  Google Scholar 

  • Wang C, Luo D, Zhang X, Huang R, Cao Y, Liu G et al (2022) Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environ Sci Ecotechnol 10:100167

    Article  CAS  Google Scholar 

  • Wei N, Zheng X, Li Q, Gong C, Ou H, Li Z (2020) Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification. J Colloid Interface Sci 565:337–344

    Article  CAS  Google Scholar 

  • Werkneh AA, Rene ER (2019) Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In: Water and Wastewater Treatment Technologies. Springer, Singapore, pp 405–430

    Google Scholar 

  • Wong PY, Cheng KY, Kaksonen AH, Sutton DC, Ginige MP (2013) A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Water Res 47(17):6488–6495

    Article  CAS  Google Scholar 

  • Wu F, Yu Q, Gauvin F, Brouwers H, Liu C (2021) Phosphorus removal from aqueous solutions by adsorptive concrete aggregates. J Clean Prod 278:123933

    Article  CAS  Google Scholar 

  • **a P, Wang X, Wang X, Song J, Wang H, Zhang J et al (2016) Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite. Colloids Surf A Physicochem Eng Asp 506:220–227

    Article  CAS  Google Scholar 

  • **a W-J, Yu L-Q, Zhang Q, Zhao Y-H, **ong J-R, Zhu X-Y et al (2020) Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Sci Total Environ 705:135959

    Article  CAS  Google Scholar 

  • **ao H, Liu N, Tian K, Liu S, Ge F (2018) Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: formation of zinc phosphate crystallites. Sci Total Environ 635:559–566

    Article  CAS  Google Scholar 

  • Xu K, Lin F, Dou X, Zheng M, Tan W, Wang C (2018) Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. J Clean Prod 187:205–214

    Article  CAS  Google Scholar 

  • Xu Y, Wu Y, Esquivel-Elizondo S, Dolfing J, Rittmann BE (2020) Using microbial aggregates to entrap aqueous phosphorus. Trends Biotechnol 38:1292–1303

    Article  CAS  Google Scholar 

  • Yan T, Ye Y, Ma H, Zhang Y, Guo W, Du B et al (2018) A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem Eng J 348:143–156

    Article  CAS  Google Scholar 

  • Yang Y, Zhao Y, Babatunde A, Wang L, Ren Y, Han Y (2006) Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep Purif Technol 51(2):193–200

    Article  CAS  Google Scholar 

  • Yang J, Zhang M, Wang H, Xue J, Lv Q, Pang G (2021) Efficient recovery of phosphate from aqueous solution using biochar derived from co-pyrolysis of sewage sludge with eggshell. J Environ Chem Eng 9:105354

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P et al (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102(10):6273–6278

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Yang L (2013a) Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environ Sci Technol 47(15):8700–8708

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y et al (2013b) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13

    Article  CAS  Google Scholar 

  • Yeoman S, Stephenson T, Lester J, Perry R (1988) The removal of phosphorus during wastewater treatment: a review. Environ Pollut 49(3):183–233

    Article  CAS  Google Scholar 

  • Yin Q, Zhang B, Wang R, Zhao Z (2017) Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environ Sci Pollut Res 24(34):26297–26309

    Article  CAS  Google Scholar 

  • Yu B, Luo J, **e H, Yang H, Chen S, Liu J et al (2021) Species, fractions, and characterization of phosphorus in sewage sludge: a critical review from the perspective of recovery. Sci Total Environ 786:147437

    Article  CAS  Google Scholar 

  • Zahed MA, Salehi S, Madadi R, Hejabi F (2021) Biochar as a sustainable product for remediation of petroleum contaminated soil. Curr Res Green Sustain Chem 4:100055

    Article  CAS  Google Scholar 

  • Zangarini S, Sciarria TP, Tambone F, Adani F (2020) Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies. Environ Sci Pollut Res 27(6):5730–5743

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Liu T, Ai Z, Yang S (2017) Synthesis of lanthanum modified titanium pillared montmorillonite and its application for removal of phosphate from wastewater. Sci Adv Mater 9(3-4):673–681

    Article  CAS  Google Scholar 

  • Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F et al (2020a) Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sust Energ Rev 118:109563

    Article  Google Scholar 

  • Zhang Z, Dong C, Liu J, Kong D, Sun L, Lu Z (2020b) Preparation of a synergistic reactive flame retardant based on silicon, phosphorus and nitrogen and its application to cotton fabrics. Cellulose 27(3):1799–1815

    Article  CAS  Google Scholar 

  • Zhang Z, Yu H, Zhu R, Zhang X, Yan L (2020c) Phosphate adsorption performance and mechanisms by nanoporous biochar–iron oxides from aqueous solutions. Environ Sci Pollut Res 27(22):28132–28145

    Article  CAS  Google Scholar 

  • Zhang X, Gang DD, Sun P, Lian Q, Yao H (2021a) Goethite dispersed corn straw-derived biochar for phosphate recovery from synthetic urine and its potential as a slow-release fertilizer. Chemosphere 262:127861

    Article  CAS  Google Scholar 

  • Zhang Y, Qin P, Lu S, Liu X, Zhai J, Xu J et al (2021b) Occurrence and risk evaluation of organophosphorus pesticides in typical water bodies of Bei**g, China. Environ Sci Pollut Res 28(2):1454–1463

    Article  CAS  Google Scholar 

  • Zhang Y, Fan S, Liu T, Fu W, Li B (2022) A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustain Energy Technol Assess 50:101873

    Google Scholar 

  • Zheng X, Sun P, Han J, Song Y, Hu Z, Fan H et al (2014) Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR)–a mini-review. Process Biochem 49(12):2207–2213

    Article  CAS  Google Scholar 

  • Zheng Q, Yang L, Song D, Zhang S, Wu H, Li S et al (2020) High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere 259:127469

    Article  CAS  Google Scholar 

  • Zhong C, Fu J, Jiang T, Zhang C, Cao G (2018) Polyphosphate metabolic gene expression analyses reveal mechanisms of phosphorus accumulation and release in Microlunatus phosphovorus strain JN459. FEMS Microbiol Lett 365(6):fny034

    Article  CAS  Google Scholar 

  • Zhou Y, Nguyen BT, Zhou C, Straka L, Lai YS, **a S et al (2017) The distribution of phosphorus and its transformations during batch growth of Synechocystis. Water Res 122:355–362

    Article  CAS  Google Scholar 

  • Zhu D, Chen Y, Yang H, Wang S, Wang X, Zhang S et al (2020) Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere 247:125847

    Article  CAS  Google Scholar 

  • Zong E, Liu X, Jiang J, Fu S, Chu F (2016) Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution. Appl Surf Sci 387:419–430

    Article  CAS  Google Scholar 

  • Zong E, Huang G, Liu X, Lei W, Jiang S, Ma Z et al (2018) A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. J Mater Chem A 6(21):9971–9983

    Article  CAS  Google Scholar 

  • Zou H, Wang Y (2016) Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresour Technol 211:87–92

    Article  CAS  Google Scholar 

  • Zou G, Liu Y, Zhang Q, Zhou T, **ang S, Gu Z et al (2020) Cultivation of Chlorella vulgaris in a light-receiving-plate (LRP)-enhanced raceway pond for ammonium and phosphorus removal from pretreated pig urine. Energies 13(7):1644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Ali Zahed, Samira Salehi, and Hossein Farraji: Conceptualization, writing–original draft, and project administration. Yasaman Tabari, Saba Ataei-Kachooei, Ali Akbar Zinatizadeh, Nima Kamali, and Mohammad Mahjouri: Writing–review and editing and investigation.

Corresponding author

Correspondence to Samira Salehi.

Ethics declarations

Consent to participate

This manuscript has no human experiments (not applicable).

Consent to publish

This manuscript has no human experiments (not applicable).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: **anliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahed, M.A., Salehi, S., Tabari, Y. et al. Phosphorus removal and recovery: state of the science and challenges. Environ Sci Pollut Res 29, 58561–58589 (2022). https://doi.org/10.1007/s11356-022-21637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21637-5

Keywords

Navigation