Log in

The efficiency of trace element uptake by seagrass Cymodocea serrulata in Rabigh lagoon, Red Sea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The search for solutions to environmental pollution has been on the increase, with many questions recently as to which marine organisms can bioaccumulate trace elements in the marine ecosystem. Cadmium, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in sediment, seawater, and seagrass compartments (root, rhizome, and leaf blade) were determined at Rabigh lagoon, Red Sea. This is to provide an insight into the potential of Cymodocea serrulata to bioaccumulate trace elements and as a good candidate to biomonitor these elements in a natural aquatic ecosystem. Results revealed significant variations in trace element concentrations across the three compartments of C. serrulata and the sites, with site S8 located in the most closed part of the lagoon recording the highest concentrations for all the trace elements. The translocation factor (TFrhizome/root = 1.00) of trace elements was higher in the root compartment. This implies that the root compartment is a better bioindicator of trace elements and has more potential to be utilized for biomonitoring. A significant positive correlation (p < 0.01) was established between the trace element concentrations in sediment, seawater, and the three compartments of C. serrulata except for Mn concentration in the compartments. The seagrass C. serrulata can be used for biomonitoring of trace elements in marine ecosystems as our results provide information on its capacity to bioaccumulate these elements. This is one of the key characteristics of a typical bioindicator of aquatic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Acknowledgements

The authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding

This research work was funded by Institutional Fund Projects under grant no. (IFPIP-136–130-1442).

Author information

Authors and Affiliations

Authors

Contributions

MOA and ABA conceived the idea and performed the laboratory analysis. All of the authors contributed to give the manuscript its present shape. All authors have read and agreed to the proposed published version of the manuscript.

Corresponding authors

Correspondence to Mohammed Othman Aljahdali or Abdullahi Bala Alhassan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljahdali, M.O., Alhassan, A.B. The efficiency of trace element uptake by seagrass Cymodocea serrulata in Rabigh lagoon, Red Sea. Environ Sci Pollut Res 29, 14948–14960 (2022). https://doi.org/10.1007/s11356-021-16808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16808-9

Keywords

Navigation