Log in

Phytoremediation of toxic metals present in soil and water environment: a critical review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2020

This article has been updated

Abstract

Heavy metals are one of the most hazardous inorganic contaminants of both water and soil environment composition. Normally, heavy metals are non-biodegradable in nature because of their long persistence in the environment. Trace amounts of heavy metal contamination may pose severe health problems in human beings after prolonged consumption. Many instrumental techniques such as atomic absorption spectrophotometry, inductively coupled plasma-mass spectrometry, X-ray fluorescence, neutron activation analysis, etc. have been developed to determine their concentration in water as well as in the soil up to ppm, ppb, or ppt levels. Recent advances in these techniques along with their respective advantages and limitations are being discussed in the present paper. Moreover, some possible remedial phytoremediation approaches (phytostimulation, phytoextraction, phyotovolatilization, rhizofiltration, phytostabilization) have been presented for the removal of the heavy metal contamination from the water and soil environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Change history

  • 03 November 2020

    The correct Table 4 is presented in this paper.

References

  • Ali I, Gupta VK (2006) Advances in Water Treatment by Adsorption Technology. Nat Protoc 1(6):2661–2667. https://doi.org/10.1038/nprot.2006.370

    Article  CAS  Google Scholar 

  • Ali I, Khan TA, Asim M (2011) Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sep Purif Rev 40(1):25–42. https://doi.org/10.1080/15422119.2011.542738

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006

    Article  CAS  Google Scholar 

  • Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water 44:195–201. https://doi.org/10.1002/clen.201500117

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019a) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. JChem 2019:1–14. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  • Ali I, Basheer AA, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019b) Review article Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180. https://doi.org/10.1016/j.envint.2019.03.029

    Article  CAS  Google Scholar 

  • Alloway BJ (2012) Sources of heavy metals and metalloids in soils. B.J. Alloway (ed.), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environ Pollut 22:11–50. https://doi.org/10.1007/978-94-007-4470-7_2

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90. https://doi.org/10.1023/B:RESB.0000040059.70899.3d

    Article  CAS  Google Scholar 

  • Al-Thani RF, Yasseen BT (2020) Phytoremediation of polluted soils and waters by native Qatari plants: future perspectives. Environ Pollut 259:113694. https://doi.org/10.1016/j.envpol.2019.113694

    Article  CAS  Google Scholar 

  • Altinozlu H, Karagoz A, Polat T, Unver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269–280. https://doi.org/10.3906/bot-1101-10

    Article  CAS  Google Scholar 

  • Anjos MJD, Lopes URT, de Jesus EFO, Assisc JT, Cesareod R, Barradase CAA (2000) Spectrochim Acta Part B 55:1189–1194

    Google Scholar 

  • Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res. https://doi.org/10.1016/j.ejar.2020.03.002

  • Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111:3433–3458. https://doi.org/10.1021/cr100383r

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    Article  CAS  Google Scholar 

  • Azizullah A, Khattak MNK, Richter P, Hader DP (2011) Water pollution in Pakistan and its impact on public health-a review. Environ Int 37:479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  Google Scholar 

  • Baby J, Raj JS, Edwin BPDS, Jeevitha MV, Ajisha SU, Rajan SS (2010) Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sc 4(4):939–952

    Google Scholar 

  • Baldwin DR, Marshall WJ (1999) Heavy metal poisoning and its laboratory investigation. Ann Clin Biochem 36(3):267–300. https://doi.org/10.1177/000456329903600301

  • Bani A, Pavlova D, Echevarria G, Mullaj A (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serb 34(1):3

    Google Scholar 

  • Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. BiosensBioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  • Beauchemin D (2017) Inductively coupled plasma mass spectrometry methods, Encyclopedia of spectroscopy and spectrometry (3rdEd) 236-245.

  • Bello S, Nasiru R, Garba NN, Adeyemo DJ (2019) Carcinogenic and non-carcinogenic health risk assessment of heavy metals exposure from Shanono and Bagwai artisanal gold mines, Kano state, Nigeria. Scientific African 6:e00197

    Google Scholar 

  • Bhat SA, Hassan T, Majid S (2019) Heavy metal toxicity and their harmful effects on living organisms-a review. Inter J Med Sci Diagno Res 3(1):106–122

    Google Scholar 

  • Bhattacharya T, Banerjee DK, Gopal B (2006) Heavy metal uptake by ScirpuslittoralisSchrad. from fly ash dosed and metal spiked soils. Environ Monit Assess 121(1-3):363–380

    CAS  Google Scholar 

  • Bian F, Zhong Z, Zhang X, Yang C, Gai X (2019) Bamboo – an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemos. https://doi.org/10.1016/j.chemosphere.2019.125750

  • Bings NH, Bogaerts A, Broekaert JAC (2010) Atomic spectroscopy: a review. Anal Chem 82:4653–4681. https://doi.org/10.1021/ac1010469

    Article  CAS  Google Scholar 

  • Blake DA, Jones RM, Blake RC, Pavlov AR, Darwish IA, Yu H (2001) Antibody-based sensors for heavy metal ions. BiosensBioelectron 16:799–809. https://doi.org/10.1016/S0956-5663(01)00223-8

    Article  CAS  Google Scholar 

  • Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, Mariani S, Cherubini S, d’Abusco AS, Scanurra R, Migliaccio S (2007) Cadmium induces mitogenic signaling in breast cancer cell by an ER α dependent mechanism. Mol Cell Endocrinol 264:102–108. https://doi.org/10.1016/j.mce.2006.10.013

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz C, Vernon-Carter E (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867. https://doi.org/10.1016/j.biortech.2010.03.027

    Article  CAS  Google Scholar 

  • Byers HL, McHenry LJ, Grundl TJ (2019) XRF techniques to quantify heavy metals in vegetables at low detection limits. Food Chem 10(1):100001. https://doi.org/10.1016/j.fochx.2018.100001

    Article  CAS  Google Scholar 

  • Cai LM, Xu ZC, Qi JY, Feng ZZ, **ang TS (2015) Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemos 127:127–135. https://doi.org/10.1016/j.chemosphere.2015.01.027

    Article  CAS  Google Scholar 

  • Callender E (2004) Heavy metals in environment-historical trends. Treatise Geochem 9:67–105. https://doi.org/10.1016/B978-0-08-095975-7.00903-7

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S (2019) Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater 361:95–102. https://doi.org/10.1016/j.jhazmat.2018.08.062

    Article  CAS  Google Scholar 

  • Cao J, Wang G, Wang T, Chen J, Wen**g G, Wu P, He X, **e L (2019) Copper caused reproductive endocrine disruption in zebrafish (Danio rerio). Aquat Toxicol 211:124–136

    CAS  Google Scholar 

  • Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307:179–189

    CAS  Google Scholar 

  • Chai L, Ding C, Tang C, Yang W, Yang Z, Wang Y, Liao Q, Li J (2018) Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacterphragmitetus BB: from genome to gene and protein. Ecotoxicol Environ Saf 162:139–146

    CAS  Google Scholar 

  • Chaney RL, Broadhurst C, Centofanti, T (2010) Phytoremediation of soil trace elements. In Trace elements in soils, ed. P.S. Hooda (Chichester: John Wiley & Sons, Inc.) 311–352

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation - focusing on accumulator plants that remediate metal-contaminated soils. Austra J Ecotox 4:37–51

    CAS  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Chen S, Wang M, Li S, Zhao ZEW (2018) Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China. J Integr Agric 17:765–774

    Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead- contaminated soils. Biotech 5(1):1–4

    CAS  Google Scholar 

  • Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interf Sci 204:35–56. https://doi.org/10.1016/j.cis.2013.12.005

    Article  CAS  Google Scholar 

  • Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in develo** countries. Sci Total Environ 569:476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  CAS  Google Scholar 

  • Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37–46

    Google Scholar 

  • Christou A, Theologides CP, Costa C, Kalavrouziotis IK, Varnavas SP (2017) Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J Geochem Explor 178:16–22. https://doi.org/10.1016/j.gexplo.2017.03.012

    Article  CAS  Google Scholar 

  • Chu Z, Fan X, Wang W, Huang WC (2019) Quantitative evaluation of heavy metals’ pollution hazards and estimation of heavy metals’ environmental costs in leachate during food waste composting. Waste Manag 84:119–128. https://doi.org/10.1016/j.wasman.2018.11.031

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  Google Scholar 

  • Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Damek MP, Sawicka KK (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicol 186(1-10):1–10. https://doi.org/10.1016/S0300-483X(02)00595-4

    Article  CAS  Google Scholar 

  • Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects and oxidative stress. Indian J Med Res 128(4):412–425

    CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.Chemosphere 55:1159–1168. https://doi.org/10.1016/j.chemosphere.2004.01.028

    Article  CAS  Google Scholar 

  • Dermatas D, Cao X, Tsaneva V, Shen G, Grubb DG (2006) Fate and behavior of metal(loid) contaminants in an organic matter-rich shooting range soil: implications for remediation. Water Air Soil Pollut 6:143–155

    CAS  Google Scholar 

  • Dinake P, Kelebemang R, Sehube N (2019) A comprehensive approach to speciation of lead and its contamination of firing range soils: a review. Soil Sediment Contam 28:1–29. https://doi.org/10.1080/15320383.2019.1597831

    Article  CAS  Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr contaminated land. Int J Phytorem 9:167–179. https://doi.org/10.1080/15226510701375978

    Article  CAS  Google Scholar 

  • Dumont ER, Larue C, Lorber S, Gryta H, Billoir E, Gross EM, Elger A (2019) Does intraspecific variability matter in ecological risk assessment?, Investigation of genotypic variations in three macrophyte species exposed to copper. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2019.03.012

  • Duruibe J, Ogwuegbu M, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112

    Google Scholar 

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175

    CAS  Google Scholar 

  • Eisler R (2000) Handbook of chemical risk assessment: health hazards to humans, plants, and animals. 2: CRC Press. https://doi.org/10.1201/9780367801397

  • Ekmekyapar F, Sabudak T, Seren G (2012) Assessment of heavy metal contamination in soil and wheat (Triticum Aestivum L.) plant around The Corlu-Cerkezko highway in Thrace Region. Global Nest J 14(4):496–504

    Google Scholar 

  • El AAK, Abdel MAW (2018) Occurrence of trace metals in food stuffs and their health impact. Trends Food Sci Technol 75:36–45. https://doi.org/10.1016/j.tifs.2018.03.001

    Article  CAS  Google Scholar 

  • Ene A, Bosneaga A, Georgescu L (2010) Determination of heavy metals in soils using XRF technique. Rom J Physiol 55(7–8):815–820

    CAS  Google Scholar 

  • Ene A, Popescu IV, Ghisa V (2009) Study of transfer efficiencies of minor elements during steelmaking by neutron activation technique. Rom Rep Physics 61(1):165

    CAS  Google Scholar 

  • Erakhrumen AA, Agbontalor A (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in develo** countries. Educ Res Rev Neth 2(7):151–156

    Google Scholar 

  • Ersana G, Apul OG, Perreault F, Karanfil T (2017) Review-Adsorption of organic contaminants by graphene nanosheets: A review. Water Res 126:385–398

    Google Scholar 

  • Etim EU (2018) Batch leaching of Pb contaminated shooting range soil using citric acid modified washing solution and electrochemical reduction. Intern J Enviro Sci Tech 16:3013–3020. https://doi.org/10.1007/s13762-018-1909-2

    Article  CAS  Google Scholar 

  • Fajardo C, Costa G, Nande M, Martín C, Martín M, Sánchez-Fortún S (2019) Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): soil and freshwater bioassays to assess ecotoxicological impact. Sci Total Environ 656:421–432

    CAS  Google Scholar 

  • Farhan M, Khan HY, Oves M, Al-Harrasi A, Rehmani N, Ari H, Hadi SM, Ahmad A (2016) Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxin 8(2):37. https://doi.org/10.3390/toxins8020037

    Article  CAS  Google Scholar 

  • Feldmann J, Salaun P, Lombi E (2009) Critical review perspective: elemental speciation analysis methods in environmental chemistry – moving towards methodological integration. Environ Chem 6:275–289. https://doi.org/10.1071/EN09018

    Article  CAS  Google Scholar 

  • Foulds SA, Brewer PA, Macklin MG, Haresign W, Betson RE, Rassner SME (2014) Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change. Sci Total Environ 476:165–180. https://doi.org/10.1016/j.scitotenv.2013.12.079

    Article  CAS  Google Scholar 

  • Franzen C, Kilian R, Biester H (2004) Natural mercury enrichment in a minerogenic fen-evaluation of sources and processes. J Environ Monit 6:466–472. https://doi.org/10.1039/B315767A

    Article  CAS  Google Scholar 

  • Friedlander LR, Weisbrod N, Garb YJ (2019) Climatic and soil-mineralogical controls on the mobility of trace metal contamination released by informal electronic waste (e-waste) processing. Chemos 232:130–139

    CAS  Google Scholar 

  • García-Salgado S, García-Casillas D, Quijano-Nieto M.A, Bonilla-Simón M M (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223: 559–572 doi:https://doi.org/10.1007/s11270-011-0882-x.

  • Gardea-Torresdey JL, Peralta-Videa JR, Rosa GD, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249(17-18):1797–1810

    CAS  Google Scholar 

  • Gardea-Torresdey JL, dela Rosa G, Peralta-Videa JR (2004) Use of phytofiltration technologies in the removal of heavy metals: a review. Pure Appl Chem 76(4):801–813

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Enviro 6(4):18

    Google Scholar 

  • Gilmour CC, Riedel GS, Riedel G, Kwon S, Landis R, Brown SS, Menzie CA, Ghosh U (2013) Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Environ Sci Technol 47(22):13001–13010

    CAS  Google Scholar 

  • Gong T, Liu J, Liu X, Liu J, **ang J, Wu Y (2016) A sensitive and selective platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem 213:306–312. https://doi.org/10.1016/j.foodchem.2016.06.091

    Article  CAS  Google Scholar 

  • Goretti E, Pallottini M, Rossi R, La Porta G, Gardi T, Cenci Goga BT, Elia AC, Galletti M, Moroni B, Petroselli C, Selvaggi R, Cappelletti D (2019) Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. Environ Pollut 256:113388. https://doi.org/10.1016/j.envpol.2019.113388

    Article  CAS  Google Scholar 

  • Guilarte TR (2011) Manganese and Parkinson’s disease: a critical review and new findings. CienSaude Colet 16:4549–4566

    Google Scholar 

  • Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water - an electrochemical approach. Sensors Actuators B Chem 213:515–533. https://doi.org/10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  • Guzzi G, La PCA (2008) Molecular mechanisms triggered by mercury. Toxico 244:1–12. https://doi.org/10.1016/j.tox.2007.11.002

    Article  CAS  Google Scholar 

  • Ha E, Basu N, Bose-O’RS DJG, McSorley E, Sakamoto M, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433. https://doi.org/10.1016/j.envres.2016.06.042

    Article  CAS  Google Scholar 

  • Häder D-P, Banaszak AT, Villafañe VE, Narvarte MA, González RA, Helbling EW (2020) Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci Total Environ 713:136586. https://doi.org/10.1016/j.scitotenv.2020.136586

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control; A sedimentological approach. Water Res 14:975–1001

    Google Scholar 

  • Hamilton JW, Kaltreider RC, Bajenova OV, Ihnat MA, McCaffrey J, Turpie BW, Rowell EE, Oh J, Nemeth MJ, Pesce CA, Lariviere JP (1998) Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Perspect 106:1005–1015. https://doi.org/10.1289/ehp.98106s41005

    Article  CAS  Google Scholar 

  • Han Y, Tang Z, Sun J, **ng X, Zhang M, Cheng J (2019) Heavy metals in soil contaminated through e-waste processing activities in a recycling area: implications for risk management. Process Saf Environ Prot 125:189–196

    CAS  Google Scholar 

  • Hao Z, Chen L, Wang C, Zou X, Zheng F, Feng W, Zhang D, Peng L (2019) Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemos 226:340–350

    CAS  Google Scholar 

  • Harrison RM, Laxen DPH, Wilson SJ (1981) Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environ Sci Techno 15:1378–1383.

  • Harvey PJ, Handley HK, Taylor MP (2015) Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. Environ Sci Pollut Res 22(16):12276–12288. https://doi.org/10.1007/s11356-015-4349-2

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Review Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009

    Article  CAS  Google Scholar 

  • He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855

    CAS  Google Scholar 

  • Heaton AC, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947. https://doi.org/10.1897/02-442

    Article  CAS  Google Scholar 

  • Henry JR (2000) In An overview of phytoremediation of lead and mercury. NNEMS Report. Washington, D.C.3-9.

  • Hou S, Zheng N, Tang L, Jib X, Lia Y, Hua X (2019) Review article: Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Enviro Intern 128:430–437

    CAS  Google Scholar 

  • Hough RL, Breward N, Young SD, Crout NM, Tye AM, Moir AM, Thornton I (2004) Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect 112:215–221. https://doi.org/10.1289/ehp.5589

    Article  CAS  Google Scholar 

  • Hu B, Xue J, Zhou Y, Shao S, Fu Z, Li Y, Chen S, Qi L, Shi Z (2020a) Modeling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ Pollut 262:114308

    CAS  Google Scholar 

  • Hu H, Zhao J, Wang L, Shang L, Cui L, Gao Y, Li B, Li Y-F (2020b) Synchrotron-based techniques for studying the environmental health effects of heavy metals: current status and future perspectives. Trends Anal Chem 122:115721. https://doi.org/10.1016/j.trac.2019.115721

    Article  CAS  Google Scholar 

  • Huang L, Liu C, Liu X, Chen Z (2019) Immobilization of heavy metals in e-waste contaminated soils by combined application of biochar and phosphate fertilizer. Water Air Soil Pollut 230:26. https://doi.org/10.1007/s11270-019-4081-5

    Article  CAS  Google Scholar 

  • Huang M, Zhu H, Zhang J, Tang D, Han X, Chen L, Du D, Yao J, Chen K, Sun J (2017) Toxic effects of cadmium on tall fescue and different responses of the photosynthetic activities in the photosystem electron donor and acceptor sides. Sci Rep 7(1):14387. https://doi.org/10.1038/s41598-017-14718-w

    Article  CAS  Google Scholar 

  • Islam S, Rahman MM, Rahman MA, Naidu R (2017) Inorganic arsenic in rice and rice-based diets: health risk assessment. Food Control 82:196–202. https://doi.org/10.1016/j.foodcont.2017.06.030

    Article  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Enviro Manage 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisciptoxico 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  Google Scholar 

  • Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Kandhro GA, Shah AQ, Baig JA (2009) Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J Hazard Mater 164(2-3):1386–1391

    CAS  Google Scholar 

  • Jansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007) Neurobehavioural and molecular changes induced by methyl mercury exposure during development. Neurotox Res 11:241–260. https://doi.org/10.1007/BF03033570

    Article  Google Scholar 

  • Jekins R. (1999). X-ray fluorescence spectrometetry. (2nd ed) John Wiley & Sons. 1-8

  • Jia Z, Wang J, Zhou X, Zhou Y, Li Y, Li B, Zhou S (2020) Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ Pollut 256:113505

    CAS  Google Scholar 

  • Jiang B, Adebayo A, Jia J, **ng Y, Deng S, Guo L, Liang Y, Zhang D (2018) Impacts of heavy metals and soil properties at a Nigerian ewaste site on soil microbial community. J Hazard Mater 362:187–195. https://doi.org/10.1016/j.jhazmat.2018.08.060

    Article  CAS  Google Scholar 

  • Kalavrouziotis I, Carter J, Varnavas S, Mehra A, Drakatos PA (2006) Towards an understanding of metal contamination in food and soils related to road traffic. Fresenius Environ Bull 15:170–175

    CAS  Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata–prospective for phytoextraction from contaminated water and soil. Curr Sci India 100:888–894

    CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    CAS  Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11:363–370. https://doi.org/10.1016/0883-2927(95)00084-4

    Article  CAS  Google Scholar 

  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Chatterjee D (2020) Metal (loid) (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ 134330

  • Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244. https://doi.org/10.1039/C1CS15245A

    Article  CAS  Google Scholar 

  • Kim J, Lee SS, Khim J (2017) Peat moss-derived biochars as effective sorbents for VOCs’ removal in groundwater. Environ Geochem Health 1–10.

  • Kim J, Oh JS, Park KC, Gupta G, Lee CY (2019) Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorg Chim Acta 486:69–73. https://doi.org/10.1016/j.ica.2018.10.025

    Article  CAS  Google Scholar 

  • Kim KH, Ebinghaus R, Schroeder WH, Blanchard P, Kock HH, Steffen A, Froude FA, Kim MY, Hong S, Kim JH (2005) Atmospheric mercury concentrations from several observatory sites in the northern hemisphere. J Atmos Chem 50(1):1–24. https://doi.org/10.1007/s10874-005-9222-0

    Article  CAS  Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  CAS  Google Scholar 

  • Kim S, Park CM, Jang M, Son A, Her N, Yu M, Snyder S, Kim DH, Yoon Y (2018) Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemos 212:1104–1124. https://doi.org/10.1016/j.chemosphere.2018.09.033

    Article  CAS  Google Scholar 

  • Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394(1):33–46. https://doi.org/10.1007/s00216-008-2594-7

    Article  CAS  Google Scholar 

  • Koedrith P, Kim H, Weon JI, Seo YR (2013) Toxic genomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216:587–598. https://doi.org/10.1016/j.ijheh.2013.02.010

    Article  CAS  Google Scholar 

  • Koptsik G (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47:923–939. https://doi.org/10.1134/S1064229314090075

    Article  CAS  Google Scholar 

  • Kubota H, Takenaka C (2003) Field note: Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediat5: 197–201 doi:https://doi.org/10.1080/713779219

  • Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg J, Pogrzeba M, Krzyak J (2005) The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273:291–305. https://doi.org/10.1007/s11104-004-8068-6

    Article  CAS  Google Scholar 

  • Kumar P (2018) Electronic waste—hazards, management and available green technologies for remediation-a review. Int Res J Environ Sci 7(5):57–68

    CAS  Google Scholar 

  • Kumar P, Deep A, Kim KH, Brown RJC (2015) Coordination polymers: opportunities and challenges for monitoring volatile organic compounds. Prog Polym Sci 45:102–118. https://doi.org/10.1016/j.progpolymsci.2015.01.002

    Article  CAS  Google Scholar 

  • Kumar P, Fulekar MH (2019) Multivariate and statistical approaches for the evaluation of heavy metals pollution at e-waste dum** sites. SN App Sci 1:1506. https://doi.org/10.1007/s42452-019-1559-0

    Article  CAS  Google Scholar 

  • Kumar P, Kim KH, Bansal V, Lazarides T, Kumar N (2017) Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng 54:30-34. Chem. https://doi.org/10.1016/j.jiec.2017.06.010

  • Kumar V, Thakur RK, Kumar P (2019) Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Scientia Horticul 257:108682

  • Lago-Vila M, Rodríguez-Seijo A, Vega FA, Arenas-Lago D (2019) Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils. Sci Total Environ 690:1151–1161

    CAS  Google Scholar 

  • Lal M, Sau BL, Patidar J, Patidar A (2018) Climate change and groundwater: impact, adaptation and sustainable. Int J BioResource Stress Manag 9(3):408–415

    Google Scholar 

  • Lam TV, Agovino P, Niu X, Roché L (2007) Linkage study of cancer risk among lead-exposed workers in New Jersey. Sci Total Environ 372:455–462. https://doi.org/10.1016/j.scitotenv.2006.10.018

    Article  CAS  Google Scholar 

  • Lamine S, Petropoulos GP, Brewer PA, Bachari NEI, Srivastava PK, Manevski K, Kalaitzidis C, Macklin MG (2019) Heavy metal soil contamination detection using combined geochemistry and field spectroradiometry in the United Kingdom. Sensors 19(4):762. https://doi.org/10.3390/s19040762

    Article  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2(5):1–25

    Google Scholar 

  • Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. BioresoTech. https://doi.org/10.1016/j.biortech.2020.122886

  • Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Gu YG, Yang ZB, Yang YX, Shao JR, Zhu XM, Cheng Z (2017) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014a) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468-469:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Li Z, Zhou M, Lin W (2014b) The research of nanoparticle and microparticle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation. J Nanomater 1-8 https://doi.org/10.1155/2014/168418

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Revees R, Niklin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. https://doi.org/10.1023/a:1022527330401

    Article  CAS  Google Scholar 

  • Liang Y, Yi X, Dang Z, Wang Q, Luo H, Tang J (2017) Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong China. Int J Environ Res Public Health 14:1557. https://doi.org/10.3390/ijerph14121557

    Article  CAS  Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J Geochem Explor 96:223–230. https://doi.org/10.1016/j.gexplo.2007.04.008

    Article  CAS  Google Scholar 

  • Lin Z, Comet B, Qvarfort U, Herbert R (1995) The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environ Pollut 89:303–309

    CAS  Google Scholar 

  • Liu D, Jiang W, Liu C, **n C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica junceaL.]. Bioresour Technol 71(3):73–277

    Google Scholar 

  • Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    CAS  Google Scholar 

  • Liu J, Li Y, Zhang B, Cao J, Cao Z, Domagalski J (2009) Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology 18:748–758. https://doi.org/10.1007/s10646-009-0345-y

    Article  CAS  Google Scholar 

  • Liu Q, Xu X, Zeng J, Shi X, Liao Y, Du P, Tang Y, Huang W, Chen Q, Shou L (2019) Heavy metal concentrations in commercial marine organisms from **angshan Bay, China, and the potential health risks. Marine Poll Bull 141:215–226

    CAS  Google Scholar 

  • Liu XM, Song QJ, Tang Y, Li WL, Xu JM, Wu JJ (2013) Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis. Sci Total Environ 463–464:530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemical enhanced phytoextraction. J Environ Qual 30:1919–1926

    CAS  Google Scholar 

  • Lou Y, Zhao P, Wang D, Amombo E, Sun X, Wang H, Amombo E, Sun X, Wang H, Zhuge Y (2017) Germination, physiological responses and gene expression of tall Fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. PLoS One 12(1):1–15. https://doi.org/10.1371/journal.pone.0169495

    Article  CAS  Google Scholar 

  • Manjate E, Ramos S, Almeida CMR (2020) Potential interferences of microplastics in the phytoremediation of Cd and Cu by the salt marsh plant Phragmites australis. J Enviro Chem Engg 8:103658. https://doi.org/10.1016/j.jece.2020.103658

    Article  CAS  Google Scholar 

  • Marella TK, Saxena A, Tiwari A (2020) Diatom mediated heavy metal remediation: a review. Bioresour Technol 305:123068. https://doi.org/10.1016/j.biortech.2020.123068

    Article  CAS  Google Scholar 

  • Maria L (2011) Biosens Environ Appl.1–16

  • Marques CC, Gabriel SI, Pinheiro T, Viegas-Crespo AM, Mathias MD, Bebianno MJ (2008) Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: an ecophysiological approach. Chemos 71:1340–1347

    CAS  Google Scholar 

  • Martin WA, Nestler CC, Wynter M, Larson SL (2014) Bullet on bullet fragmentation profile in soils. J Environ Manag 146:369–372

    CAS  Google Scholar 

  • Mclaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients: food safety issues. Field Crop Res 60:143–163

    Google Scholar 

  • Meers E, Tack FMG (2004) The potential of foliar treatments for enhanced phytoextraction of heavy metals from contaminated soil with Helianthus annuus. Remediat J 14:111–123

    Google Scholar 

  • Mehouel F, Bouayad L, Hammoudi AH, Ayadi O, Regad F (2019) Evaluation of the heavy metals (mercury, lead, and cadmium) contamination of sardine (Sardinapilchardus) and swordfish (**phias gladius) fished in three Algerian coasts. Vet World 12(1):7–11. https://doi.org/10.14202/vetworld.2019.7-11

    Article  CAS  Google Scholar 

  • Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim KH, Deep (2016) A progress in the biosensing techniques for trace-level heavy metals. Biotechnol Adv 34:47–60. https://doi.org/10.1016/j.biotechadv.2015.12.001

  • Merkoc S, Alegret (2007) Comprehensive analytical chemistry. Elsevier B.V., Amsterdam.143.

  • Mirecki N, Agic R, Sunic L, Milenkovic L, Ilic ZS (2015) Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bull 24(11c):4212–4219

    CAS  Google Scholar 

  • Mohammed AS, Kapri A, Goel R (2011) Biomanagement of metal-contaminated soils, heavy metal pollution, source, impact, and remedies. Dordrecht, Springer: 1–28. https://doi.org/10.1007/978-94-007-1914-9_1

  • Mohanty M, Patra HK (2020) Phytoassessment of in situ weed diversity for their chromium distribution pattern and accumulation indices of abundant weeds at South Kaliapani chromite mining area with their phytoremediation prospective. Ecotox Environ Safe 194:110399. https://doi.org/10.1016/j.ecoenv.2020.110399

    Article  CAS  Google Scholar 

  • Mohanty M, Pattnaik MM, Mishra AK, Patra HK (2012) Bio-concentration of chromium-an in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ Monit Assess 184(2):1015–1024. https://doi.org/10.1007/s10661-011-2017-7

    Article  CAS  Google Scholar 

  • Moon DH, Cheong KH, Khim J, Wazne M, Hyun S, Park JH, Chang YY, Ok YS (2013b) Stabilization of Pb2+ and Cu2+ contaminated firing range soil using calcined oyster shells and waste cow bones. Chemos 91:1349–1354

    CAS  Google Scholar 

  • Moon DH, Park JW, Chang YY, Ok YS, Lee SS, Ahmad M, Koutsospyros A, Park JH, Baek K (2013a) Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res 20:8464–8471. https://doi.org/10.1007/s11356-013-1964-7

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Enviro Experim Botany 62(1):78–85

    CAS  Google Scholar 

  • Mueller N, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558. https://doi.org/10.1007/s11356-011-0576-3

    Article  CAS  Google Scholar 

  • Mwangi IW, Ngila JC (2012) Removal of heavy metals from contaminated water using ethylenediamine-modified green seaweed (Caulerpa serrulata). Phys Chem Earth A/B/C 50(52):111–120

    Google Scholar 

  • Mwegoha WJS (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. J Sustain Dev Africa 10(1):140–156

    Google Scholar 

  • Nanda M, Kumar V, Sharma DK (2019) Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. AquatToxico 212:1–10

    CAS  Google Scholar 

  • Nejad ZD, Jung MC, Kim KH (2018) Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health 40:927–953. https://doi.org/10.1007/s10653-017-9964-z

    Article  CAS  Google Scholar 

  • Ni H, **ong Z, Ye T, Zhang Z, Ma X, Li L (2012) Biosorption of copper(II) from aqueous solutions using volcanic rock matrix-immobilized Pseudomonas putida cells with surface-displayed cyanobacterial metallothioneins. Chem Eng J 204-206:264–271

    CAS  Google Scholar 

  • Mu’azu ND, Essa MH, Haladu SA, Ali SA, Jarrah SN, Zubair M, Mohamed IA (2019) Removal zinc ions from contaminated soil using biodegradable polyaspartate via soil washing process. J. Phy: Conference Series1349: International Conference on Nanomaterials: Science, Engineering and Technology (ICoNSET) Aug 5-6, 2019, Penang Island, Malaysia

  • Nyarko BJB, Dampare SB, Serfor-Armah Y, Osae S, Adotey D, Adomako D (2008) Biomonitoring in the forest zone of Ghana: the primary results obtained using neutron activation analysis and lichens. Int J Environ Pollut 32:467–476. https://doi.org/10.1504/IJEP.2008.01841

    Article  CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Intern J Physi Sci 5(12):1807–1817

    CAS  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotech30(1):3-8.

  • Otsuka M, Itai T, Asante KA, Muto M, Tanabe S (2012) Trace element contamination around the e-waste recycling site at Agbogbloshie, Accra City, Ghana. Interdiscip Stud Environ Chem Environ Pollut Ecotoxicol 6(6):161–167

    Google Scholar 

  • Ouabo RE, Ogundiran MB, Sangodoyin AY, Babalola BA (2019) Ecological risk and human health implications of heavy metals contamination of surface soil in e-waste recycling sites in Douala, Cameroun. J Health Poll 21:(190310).

  • Oves M, Khan MS, Zaidi A, Ahmad E (2012) Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. toxicity of heavy metals to legumes and bioremediation: 1-27. https://doi.org/10.1007/978-3-7091-0730-0_1

  • Oves M, Saghir KM, Huda QA, Nadeen FM, AT (2016) Heavy metals: biological importance and detoxification strategies. J Bioremediat Biodegrad 7:2. https://doi.org/10.4172/2155-6199.1000334

    Article  CAS  Google Scholar 

  • Pal D, Maiti SK (2020) An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbents. Ecotoxicol Environ Saf 187:109833

    CAS  Google Scholar 

  • Pan LB, Ma J, Wang XL, Hou H (2016) Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemos 148:248–254

    CAS  Google Scholar 

  • Park J, Lee S, Lee E, Noh H, Seo Y, Lim H, Shin H, Lee I, Jung H, Na T, Kim SD (2019) Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers. Ecotoxicol Environ Saf 183:109483

    CAS  Google Scholar 

  • Park JD, Zheng W (2012) Human exposure and health effects of inorganic and elemental mercury. J Preven Med Public Heal 45:344–352

    Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2020) Toxic metal decontamination by phytoremediation approach: concept, challenges, opportunities and future perspectives. Environ Technol Innov 18:100672. https://doi.org/10.1016/j.eti.2020.100672

    Article  Google Scholar 

  • Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392(1):22–29. https://doi.org/10.1016/j.scitotenv.2007.11.032

    Article  CAS  Google Scholar 

  • Peralta E, Pérez G, Ojeda G, Alcañiz JM, Valiente M, López-Mesas M, Sánchez-Martín MJ (2020) Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils. Sci Total Environ 726:138670

    CAS  Google Scholar 

  • Peralta VJR, Lopez ML, Narayan M, Saupe G, Gardea TJ (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1667. https://doi.org/10.1016/j.biocel.2009.03.005

    Article  CAS  Google Scholar 

  • Pérez-Sanz A, Millán R, Sierra MJ, Alarcón R, García P, Gil-Díaz M (2012) Mercury uptake by Silene vulgaris grown on contaminated spiked soils. J Environ Manag 95:S233–S237. https://doi.org/10.1016/j.jenvman.2010.07.018

    Article  CAS  Google Scholar 

  • Prabhakar S, Singh AK, Pooni DS (2012) Effect of environmental pollution on animal and human health: a review. Ind J Anim Sci 82:244–255

    CAS  Google Scholar 

  • Prasad MN, Pratas J, Freitas H (2006) Trace elements in plants and soils of abandoned mines in Portugal: significance for phytomanagement and biogeochemical prospecting. Trace Elements in the Environment. Bio Geo Chemistry BiotechnoBioremed 507-521.

  • Prasad MNV (2005) Nickelophilous plants and their significance in phytotechnologies. Braz J Plant Physiol 17:113–128. https://doi.org/10.1590/S167704202005000100010

    Article  CAS  Google Scholar 

  • Popescu IV, Stihi C, Cimpoca GV, Dima G, Vlaicu G, Gheboianu A, Bancuta I, Ghisa V, State G (2009) Environmental Samples Analysis by Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-AES). Rom J Phys 54(7-8):731–741

    Google Scholar 

  • Pujol L, Evrard D, Serrano KG, Freyssinier M, Cizsak AR, Gros P (2014) Electrochemical sensors and devices for electrochemical assay in water: the French groups contribution. Front Chem Anal Chem 19:1–24

    Google Scholar 

  • Qi C, Wu F, Deng Q, Liu G, Mo C, Liu B, Zhu J (2011) Distribution and accumulation of antimony in plant in the super-large Sb deposit areas, China. Microchem J 99(1):44–51. https://doi.org/10.1016/j.microc.2010.05.016

    Article  CAS  Google Scholar 

  • Qiao D, Wang G, Li X, Wang S, Zhao Y (2020) Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet. China Chemos 248:125988. https://doi.org/10.1016/j.chemosphere.2020.125988

    Article  CAS  Google Scholar 

  • Qiao J, Zhu Y, Jia X, Ming S, Niu X, Liu J (2019) Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China. Environ Res 181:108957. https://doi.org/10.1016/j.envres.2019.108957

    Article  CAS  Google Scholar 

  • Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Enviro Poll 258:113777. https://doi.org/10.1016/j.envpol.2019.113777

    Article  CAS  Google Scholar 

  • Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, Mathias ML (2019) Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). Ecotoxicol Environ Saf 171:414–424

    CAS  Google Scholar 

  • Radtke M, Reinholz U, Gebhard R (2016) Synchrotron radiation–induced X-ray fluorescence (SRXRF) analyses of The Bernstorf Gold. Archaeometry 59:891–899. https://doi.org/10.1111/arcm.12294

    Article  CAS  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytorem 10:430–439

    CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim K-H (2019) Review article- Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385

    CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  Google Scholar 

  • Ranjan M, Singh PK, Srivastav AL (2019) A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water. Environ Sci Pollut Res 27:17492–17504. https://doi.org/10.1007/s11356-019-05359-9

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. – John Wiley & Sons, Inc., New York53-70.

  • Rehman U, Khan S, Muhammad S (2019) Ingestion of arsenic-contaminated drinking water leads to health risk and traces in human biomarkers (hair, nails, blood, and urine). Pakistan Expo Health 12:243–254. https://doi.org/10.1007/s12403-019-00308-w

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, ur Rehman MZ, Maqbool A (2019) A critical review on 877 the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res 26:6279–6289

    CAS  Google Scholar 

  • Robinson BH, Bischofberger S, Stoll A, Schroer D, Furrer G, Roulier S (2008) Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications. Environ Pollut 153:668–676

    CAS  Google Scholar 

  • Rocha ACS, Almeida CMR, Basto MCP, Vasconcelos MTS (2014) Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicol Environ Saf 109:152–160

    CAS  Google Scholar 

  • Rodriguez L, Lopez-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresenius Environ Bull 9:328–332. https://doi.org/10.1007/s11356-019-06563-3

    Article  CAS  Google Scholar 

  • Rock B, Suriyan J, Vijay B, Thalha N, Elango S (2017) Organic Food and Health: A Systematic Review. Community Med Health Educ 7:2161–2711

    Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    CAS  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39:735–741. https://doi.org/10.1002/clen.201000488

    Article  CAS  Google Scholar 

  • Salam MD, Varma A (2018) Toxic pollutants survey in soils of electronic waste-contaminated sites in Delhi NCR. S. K. Ghosh (ed.), Waste Manag Reso Effi 841-851 https://doi.org/10.1007/978-981-10-7290-1_71

  • Salem HM, Eweida EA, Farag A (2000a) Heavy metals in drinking water and their environmental impact on human health. ICEHM:542–556

  • Salem HM, Eweida EA, Farag A (2000b) Heavy metals in drinking water and their environmental impact on human health. ICEHM Cairo Univ Egyp:542–556

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Intern J Phytorem 5(2):89–103

    CAS  Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian Mustard. Environ Sci Technol 31(6):1636–1644

    CAS  Google Scholar 

  • Sandhu N, Liang L, McGeer J, Dores RM, Vijayan MM (2019) Cadmium disrupts melanocortin 2 receptor signaling in rainbow trout. Aquat Toxicol 209:26–33

    CAS  Google Scholar 

  • Santos MC, Nóbrega JA, Cadore S (2011) Determination of Cd, Cr, Hg and Pbin plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision-reaction interface technology. J Hazard Mater 190:833–839

    CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Review- Role of nanomaterials in water treatment applications: A review. Chem Eng J 306:1116–1137

    CAS  Google Scholar 

  • Sarah R, Tabassum B, Idrees N, Hashem A, Abd_Allah EF (2019) Bioaccumulation of heavy metals in Channa punctatus (Bloch) in river Ramganga (U.P.), India. Saudi J Biolog Sci 26:979–984

    CAS  Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Małkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137:101–109. https://doi.org/10.1007/s10661-007-9732-0

    Article  CAS  Google Scholar 

  • Senesi GS, Dell AM, Gaudiuso R, De GA, Zaccone C, De PO, Miano TM, Capitelli M (2009) Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ Res 109(4):413–420

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: A review. Miner Eng 22:1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  • Seshan BRR, Natesan U, Deepthi K (2010) Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int J Environ Sci Technol 7(2):291–306

    CAS  Google Scholar 

  • Sevim Ç, Dogan E, Comakli S (2020) Cardiovascular disease and toxic metals. Current Opi Toxicol 19:88–92

    Google Scholar 

  • Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774. https://doi.org/10.1016/j.eti.2020.100774

    Article  Google Scholar 

  • Shaumloffel D (2012) Nickel species: analysis and toxic effects. J Trace Elem Med Biol 26:1–6. https://doi.org/10.1016/j.jtemb.2012.01.002

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619. https://doi.org/10.1016/j.fct.2009.11.041

    Article  CAS  Google Scholar 

  • Singh PK, Wang W, Shrivastava AK (2018) Cadmium-mediated morphological, biochemical and physiological tuning in three different Anabaena species. Aquat Toxicol 202:36–45

    CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharm 43(3):246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  • Singh V, Rai P, Pathak A, Tripathi D, Singh S, Singh J (2017) Application of wavelength-dispersive X-ray fluorescence spectrometry to biological samples. Spectroscopy 32(7):41–47

    CAS  Google Scholar 

  • Son EB, Poo KM, Chang JS, Chae KJ (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168

    CAS  Google Scholar 

  • Soodan RK, Pakade YB, Nagpal A, Katnoria JK (2014) Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review. Talanta 125:405–410. https://doi.org/10.1016/j.talan-ta.2014.02.033

    Article  CAS  Google Scholar 

  • Spyra A, Cieplok A, Strzelec M, Babczyńska A (2019) Freshwater alien species Physellaacuta (Draparnaud, 1805) - a possible model for bioaccumulation of heavy metals. Ecotoxicol Environ Saf 185:109703

    CAS  Google Scholar 

  • Srivastav AL (2013) Development of inorganic adsorptive media for the removal of nitrate and fluoride from water. Ph.D. Thesis, Indian Institute of Technology (BHU) Varanasi (India).

  • Srivastav AL, Kaur T, Rani L, Kumar A (2019) Scientific research production of India and China in environmental chemistry: a bibliometric assessment. Int J Environ Sci Technol 16:4989–4996. https://doi.org/10.1007/s13762-019-02306-6

    Article  Google Scholar 

  • Srivastav AL, Singh PK, Srivastava V, Sharma YC (2013) Application of a new adsorbent for fluoride removal from aqueous solutions. J Hazard Mater 263:342–352. https://doi.org/10.1016/j.jhazmat.2013.04.017

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    CAS  Google Scholar 

  • Srungaram PK, Ayyalasomayajula KK, Yueh YF, Singh JP (2013) Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils. Spectrochim. Acta. Part B Atomic Spect 87:108–113

    CAS  Google Scholar 

  • Steliga T, Kluk D (2020) Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol Environ Saf 194:110409

    CAS  Google Scholar 

  • Stenvall E, Tostar S, Boldizar A, Foreman MR, Möller K (2013) An analysis ofthe composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag 33:915–922

    CAS  Google Scholar 

  • Suciu I, Cosma C, Todica M, Bolboaca SD, Jantschi L (2008) Analysis of soil heavy metal pollution and pattern in Central Transylvania. Int J Mol Sci 9:434–453. https://doi.org/10.3390/ijms9040434

    Article  CAS  Google Scholar 

  • Sughis M, Penders J, Haufroid V, Nemery B, Nawrot TS (2011) Bone resorption and environmental exposure to cadmium in children: a cross-sectional study. Environ Health 10(1):104. https://doi.org/10.1186/1476-069X-10-104

    Article  CAS  Google Scholar 

  • Sukumar C, Gowthami G, Nitya R, Janaki V, Kamala-Kannan S, Shanthi K (2014) Significance of co-immobilized activated carbon and Bacillus subtilis on removal of Cr(VI) from aqueous solutions. Environ Earth Sci 72:839–847

    CAS  Google Scholar 

  • Sun C, Liu J, Wang Y, Sun L, Yu H (2013) Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemos 92:517–523

    CAS  Google Scholar 

  • Sun HF, Li YH, Ji YF, Yang LS, Wang WY, Li HR (2010) Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan province, China. Trans Nonferrous Metals Soc China 20:308–314. https://doi.org/10.1016/S1003-6326(09)60139-4

    Article  CAS  Google Scholar 

  • Sun T, Deng-hong W, De-bo L, **n-xing L, Zheng-hui C, Li-xing L, Cheng-hui W (2014) Geological characteristics of the nickel metallogenic belts in China and the prospecting orientation. Chin Geol 41:1986–2001

    Google Scholar 

  • Sun Y, Zhou Q, Xub Y, Wang L (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082. https://doi.org/10.1016/j.jhazmat.2010.12.116

    Article  CAS  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124. https://doi.org/10.1016/j.ecoenv.2012.06.027

    Article  CAS  Google Scholar 

  • Tang Z, Chai M, Cheng J, ** J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 138:83–91

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Hindawi Publishing Corporation. Int J Chem Eng 31:1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Teuchies J, Jacobs S, Oosterlee L, Bervoets L, Meire P (2013) Role of plants in metal cycling in a tidal wetland: implications for phytoremediation. Sci Total Environ 445:146–154

    Google Scholar 

  • Torok SB, Labar J, Schmeling M, Van GRE (1998) X-ray spectrometry. Anal Chem 70(12):495–517. https://doi.org/10.1021/a1980020x

    Article  Google Scholar 

  • Trautwein A, Deutsche F (1997) Bioinorganic chemistry: transition metals in biology and their coordination chemistry. Deutsche Forschungsgemeinschaft, Wiley-VCH, Bonn, Germany, Weinheim, Germany

    Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165. https://doi.org/10.1016/j.tibtech.2007.02.003

    Article  CAS  Google Scholar 

  • Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 2011:1–15

    Google Scholar 

  • Turer DG, Maynard BJ (2003) Heavy metal contamination in highway soils comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technol Environ 4:235–245. https://doi.org/10.1007/s10098-002-0159-6

    Article  CAS  Google Scholar 

  • U. S. Environmental Protection Agency (2000) Introduction to phytoremediation, National Risk Management Research Laboratory, EPA/600/R-99/107,http://www.clu-in.org/ download/remed/introphyto.pdf.

  • U.S.Environmental Protection Agency (USEPA) (1989) Risk assessment guidance for Superfund, Volume I: human health evaluation manual. Washington, DC, USA, Office of Emergency and Remedial Response, p 1989

    Google Scholar 

  • Van Ginneken L, Meers E, Guisson R (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Enviro Engg Landscape Manag 15(4):227–236

    Google Scholar 

  • Vardhan KH, Kumar PS, Panda RC (2019) A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. J Mol Liq 290:111197

    CAS  Google Scholar 

  • Viard B, Pihan F, Promeyrat S, Pihan JC (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55(10):1349–1359

  • Vries W, Romkens PF, Schutze G (2007) Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Environ Contam T 191:91. https://doi.org/10.1007/978-0-387-69163-3_4

    Article  Google Scholar 

  • Wallace DR, Djordjevic AB (2020) Heavy metal and pesticide exposure: a mixture of potential toxicity and carcinogenicity. Current Opi Toxico 19:72–79

    Google Scholar 

  • Wallace KJ (2009) Molecular dyes used for the detection of biological and environmental heavy metals: highlights from 2004 to 2008. Supramol Chem 21(1-2):89–102. https://doi.org/10.1080/10610270802516633

    Article  CAS  Google Scholar 

  • Wanekaya AK (2011) Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136:4383–4439. https://doi.org/10.1016/0883-2927(95)00084-4

    Article  CAS  Google Scholar 

  • Wang QR, Cui YS, Liu XM, Dong YT, Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J Environ Sci Health-PartA 38:823–838. https://doi.org/10.1081/ESE-120018594

    Article  CAS  Google Scholar 

  • Wang Y, Qiao M, Liu Y, Zhu Y (2012) Health risk assessment of heavy metals in soils and vegetables fromwastewater irrigated area, Bei**g-Tian** city cluster, China. J Environ Sci 24(4):690–698. https://doi.org/10.1016/s1001-0742(11)60833-4

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, Zhan W, Zheng K, Wang J, Zhang C, Chen R (2020b) Stabilization of heavy metal contaminated soils by biochar: challenges and recommendations. Sci Total Environ 729:139060. https://doi.org/10.1016/j.scitotenv.2020.139060

    Article  CAS  Google Scholar 

  • Wang Y, Luo Y, Zeng G, Wu X, Wu B, Li X, Xu H (2020a) Characteristics and in situ remediation effects of heavy metal immobilizing bacteria on cadmium and nickel co-contaminated soil. Ecotoxicol Environ Saf 192:110294

    CAS  Google Scholar 

  • Wang Y, Meng D, Fei L, Dong Q, Wang Z (2019) A novel phytoextraction strategy based on harvesting the dead leaves: cadmium distribution and chelator regulations among leaves of tall fescue. Sci Total Environ 650:3041–3047. https://doi.org/10.1016/j.scitotenv.2018.10.072

    Article  CAS  Google Scholar 

  • Wei L, Liu Y (2012) Present status of e-waste disposal and recycling in China. Procedia Environ Sci 16:506–514. https://doi.org/10.1016/j.proenv.2012.10.070

    Article  Google Scholar 

  • Wei S, Zhou Q, Saha UK (2008) Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut 192:173–181

    CAS  Google Scholar 

  • Wen J, Yi Y, Zeng G (2016) Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J Environ Manag 178:63–69

    CAS  Google Scholar 

  • WHO (2011) Background document for preparation of WHO guidelines for drinking water quality. World Health Organization (WHO/SDE/WSH/03.04/Rev/1), Geneva.

  • Wilberforce JOO (2016) Review of principles and application of AAS, PIXE and XRF and their usefulness in environmental analysis of heavy metals. IOSR J Appl Chem 9(6):15–17

    Google Scholar 

  • Wu Q, Leung JYS, Du Y, Kong D, Shi Y, Wang Y, **ao T (2019a) Trace metals in e-waste lead to serious health risk through consumption of rice growing near an abandoned e-waste recycling site: comparisons with PBDEs and AHFRs. Environ Pollut 247:46–54

    CAS  Google Scholar 

  • Wu Y, Pang LY, Wang X, Yu S, Fu D, Chen J, Wang X (2019b) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620. https://doi.org/10.1016/j.envpol.2018.12.076

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Ye S, Zeng G, Wu H, Chang Z, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Chen Z (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1304357

  • Yin D, Wang X, Chen C, Peng B, Tan C, Li H (2016) Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152:196–206

  • Yin YM, Zhao WT, Huang T, Cheng SG, Zhao ZL, Yu CC (2018) Distribution characteristics and health risk assessment of heavy metals in a soil-rice system in an e-waste dismantling area. Environ Sci 39:916–926 in Chinese

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. https://doi.org/10.1016/j.biortech.2005.12.006

    Article  CAS  Google Scholar 

  • Yu Y, Zhu X, Li L, Lin B, **ang M, Zhang X, Chen X, Yu Z, Wang Z, Wan Y (2019) Health implication of heavy metals exposure via multiple pathways for residents living near a former e-waste recycling area in China: a comparative study. Ecotoxicol Environ Saf 169:178–184

    CAS  Google Scholar 

  • Zang F, Wang S, Nan Z, Ma J, Li Y, Zhang Q, Chen Y (2017) Immobilization of Cu, Zn, Cd and Pb in mine drainage stream sediment using Chinese loess. Chemos 181:83–91

    CAS  Google Scholar 

  • Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44(10):1129–1165. https://doi.org/10.1080/10643389.2013.763578

    Article  CAS  Google Scholar 

  • Zhang B, Wu D, Zhang L, Jiao Q, Li Q (2012a) Application of hyperspectral remote sensing for environment monitoring in mining areas. Environ Earth Sci 65(3):649–658. https://doi.org/10.1007/s12665-011-1112-y

    Article  CAS  Google Scholar 

  • Zhang C, Li X, Chen Z, Wen T, Huang S, Hayat T, Alsaedi A, Wang X (2018) Synthesis of ordered mesoporous carbonaceous materials and its highly efficient capture of uranium from solutions. Sci China Chem 61:281–293. https://doi.org/10.1007/s11426-017-9132-7

    Article  CAS  Google Scholar 

  • Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767

    CAS  Google Scholar 

  • Zhang J, Yang R, Li YC, Peng Y, Wen X, Ni X (2020) Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol Environ Saf 195:110475

    CAS  Google Scholar 

  • Zhang K, Schnoor JL, Zeng EY (2012b) E-waste recycling: where does it go from here? Environ Sci Technol 46:10861e10867. https://doi.org/10.1021/es303166s

    Article  CAS  Google Scholar 

  • Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(1):128–142. https://doi.org/10.1016/j.nantod.2010.03.002

    Article  CAS  Google Scholar 

  • Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, Guo JH, Yuan JG, Yang ZY (2016) Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis l.) in response to cadmium stress. Environ Sci Technol 50:6485–6494. https://doi.org/10.1021/acs.est.5b06326

    Article  CAS  Google Scholar 

  • Zhu H, Chen L, **ng W, Ran S, Wei Z, Amee M, Wassie M, Niu H, Tang D, Sun J, Du D, Yao J, Hou H, Chen K, Sun J (2020) Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: a novel strategy for strengthening of phytoremediation. J Hazard Mater 388:122080. https://doi.org/10.1016/j.jhazmat.2020.122080

    Article  CAS  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715. https://doi.org/10.1007/s10653-009-9248-3

    Article  CAS  Google Scholar 

  • Zou B, Jiang X, Duan X, Zhao X, Zhang J, Tang J, Sun G (2017) An integrated h-g scheme identifying areas for soil remediation and primary heavy metal contributors: a risk perspective. Sci Report 7:341

    Google Scholar 

  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304. https://doi.org/10.1021/acs.est.6b01897

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Department of Environment, Science & Technology, Shimla, Government of Himachal Pradesh (India) for providing financial assistance [Grant No: Env. S&T(F)/5-1/2018-8886].

Author information

Authors and Affiliations

Authors

Contributions

VSK: critical review and expert view; AS: critical review and expert view; ALS: ideation and drafting of the manuscript; LR: literature review and drafting of the manuscript. All authors contributed to the research article and approved the final version.

Corresponding author

Correspondence to Arun Lal Srivastav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Heavy metals have been considered as one of the most lethal inorganic contaminants of water and soil.

• Major sources of toxic heavy metals are mining activities, industries, atmospheric pollution, etc.

• Heavy metal intake can cause carcinogenicity, teratogenicity, cardiovascular problems, etc.

• AAS, XRF, and NAA are the best determination techniques of heavy metals.

• Phytoextraction and phyotovolatilization are the best approaches of heavy metal removal from the soil and water, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwar, V.S., Sharma, A., Srivastav, A.L. et al. Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Pollut Res 27, 44835–44860 (2020). https://doi.org/10.1007/s11356-020-10713-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10713-3

Keywords

Navigation