Log in

Photochemical reactions between 1,4-benzoquinone and O2•−

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The superoxide anion radical (O2•−) is one of the most predominant reactive oxygen species (ROS), which is also involved in diverse chemical and biological processes. In this study, O2•− was generated by irradiating riboflavin in an O2-saturated solution using an ultraviolet lamp (λem = 365 nm) as the light source. The photochemical reduction of 1,4-benzoquinone (p-BQ) by O2•− was explored by 355-nm laser flash photolysis (LFP) and 365-nm UV light steady irradiation. The results showed that the photodecomposition efficiency of p-BQ was influenced by the riboflavin concentration, p-BQ initial concentration, and pH values. The superoxide anion radical originating from riboflavin photolysis served as a reductant to react with p-BQ, forming reduced BQ radicals (BQ•−) with a second-order rate constant of 1.1 × 109 L mol−1 s−1. The main product of the photochemical reaction between p-BQ and O2•− was hydroquinone (H2Q). The present work suggests that the reaction with O2•− is a potential transformation pathway of 1, 4-benzoquinone in atmospheric aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam MS, Delgado-Saborit JM, Stark C, Harrison RM (2013) Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmos Environ 77:24–35

    CAS  Google Scholar 

  • Arakaki T, Miyake T, Hirakawa T, Sakugawa H (1999) pH dependent photoformation of hydroxyl radical and absorbance of aqueous-phase N(III) (HNO2 and NO2-). Environ Sci Technol 33:2561–2565

    CAS  Google Scholar 

  • Arangiol AM, Tong HJ, Socorro J, Poschl U, Shiraiwa M (2016) Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos Chem Phys 16:13105–13119

    Google Scholar 

  • Burns JM, Cooper WJ, Ferry JL, King DW, DiMento BP, McNeill K et al (2012) Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci 74:683–734

    CAS  Google Scholar 

  • Cheng CW, Chen LY, Chou CW, Liang JY (2015) Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. J Photochem Photobiol B 148:262–267

    CAS  Google Scholar 

  • Costentin C, Robert M, Saveant JM (2010) Concerted proton-electron transfers: electrochemical and related approaches. Acc Chem Res 43:1019–1029

    CAS  Google Scholar 

  • Delgado-Saborit JM, Alam MS, Pollitt KJG, Stark C, Harrison RM (2013) Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos Environ 77:974–982

    CAS  Google Scholar 

  • Dhar SK, Batinic-Haberle I, Clair DKS (2019) UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation. J Biol Chem 294(17):6831–6842. https://doi.org/10.1074/jbc.ra118.006595

    Article  CAS  Google Scholar 

  • Ding X, Zhao K, Zhang LZ (2014) Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide Ions. Environ Sci Technol 48:5823–5831

    CAS  Google Scholar 

  • Eugene AJ, Guzman MI (2019) Production of singlet oxygen (1O2) during the photochemistry of aqueous pyruvic acid: The effects of pH and photon flux under steady-state O2(aq) concentration. Environ Sci Technol 53(21):12425–12432. https://doi.org/10.1021/acs.est.9b03742

    Article  CAS  Google Scholar 

  • Fede A, Grannas AM (2015) Photochemical production of singlet oxygen from dissolved organic matter in ice. Environ Sci Technol 49(21):12808–12815

    CAS  Google Scholar 

  • Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L (1974) The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Biochem J 139:49–60

    CAS  Google Scholar 

  • Gorner H, Miskolczy Z, Megyesi M, Biczok L (2011) Photo-oxidation of alkaloids: considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation. Photochem Photobiol 87:1315–1320

    Google Scholar 

  • Greenstock CL, Ruddock GW (1976) Determination of superoxide radical anion (O2•−) reaction rates using pulse radiolysis. Int J Radiat Phys Chem 8:367–369

    CAS  Google Scholar 

  • Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085

    CAS  Google Scholar 

  • Heard DE, Pilling MJ (2003) Measurement of OH and HO2 in the troposphere. Chem Rev 103:5163–5198

    CAS  Google Scholar 

  • Herrmann H, Schaefer T, Tilgner A, Styler SA, Weller C, Teich M, Otto T (2015) Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chem Rev 115:4259–4334

    CAS  Google Scholar 

  • Horvath L, Meszaros E, Antttal E (1981) On the sulfate, chloride and sodium concentration in maritime air around the Asian continent. Tellus 33(4):382–386. https://doi.org/10.3402/tellusa.v33i4.10724

    Article  CAS  Google Scholar 

  • Izawa J, Yokozawa T, Kurata T, Yoshida A, Matsunaga Y et al (2014) Stand-off detection and classification of CBRNe using a lidar system based on a high power femtosecond laser. Proc SPIE 9253:UNSP 92530C. https://doi.org/10.1117/12.2067005

    Article  Google Scholar 

  • Kaur R, Anastasio C (2017) Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters. Atmos Environ 164:387–397

    CAS  Google Scholar 

  • Khaydukov EV, Mironova KE, Semchishen VA, Generalova AN, Nechaev AV, Khochenkov DA, Stepanova EV, Lebedev OI, Zvyagin AV, Deyev SM, Panchenko VY (2016) Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci Rep 6:35103

    CAS  Google Scholar 

  • Lee YN, Zhou XL (1994) Aqueous reaction kinetics of ozone and dimethylsulfide and its atmospheric implications. J Geophys Res 99:3597–3605

    CAS  Google Scholar 

  • Lei Y, Zhu CZ, Lu J, Zhu YC, Zhang QY, Chen TH, **ong HB (2018) Photochemical oxidation of di-n-butyl phthalate in atmospheric hydrometeors by hydroxyl radicals from nitrous acid. Environ Sci Pollut Res 25(31):31091–31100. https://doi.org/10.1007/s11356-018-3091-y

    Article  CAS  Google Scholar 

  • Li KY, Kuo CH, Weeks JL (1979) A kinetic study of ozone-phenol reaction in aqueous solutions. AIChE 25(4):583–591

    CAS  Google Scholar 

  • Lu CY, Han ZH, Liu GS, Cai XC, Chen YL, Yao SD (2001) Photophysical and photochemical processes of riboflavin (vitamin B2) by means of the transient absorption spectra in aqueous solution. Sci China (Series B) 44:39–48

    CAS  Google Scholar 

  • Lu YY, Liu Y, **a BW, Zuo WQ (2012) Phenol oxidation by combined cavitation water jet and hydrogen peroxide. Chin J Chem Eng 20(4):760–767

    Google Scholar 

  • Lu R, Chen W, Li WW, Sheng GP, Wang LJ, Yu HQ (2017) Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry. Front Environ Sci Eng 11(1):14

    Google Scholar 

  • Lu J, Lei Y, Ma JZ, Liu XW, Zhu MY, Zhu CZ (2019) Photochemical reaction kinetics and mechanistic investigations of nitrous acid with sulfamethazine in tropospheric water. Environ Sci Pollut Res 26(25):26134–26145. https://doi.org/10.1007/s11356-019-05875-8

    Article  CAS  Google Scholar 

  • Ma JZ, Zhu CZ, Lu J, Wang T, Hu SH, Chen TH (2017) Photochemical reaction between biphenyl and N(III) in the atmospheric aqueous phase. Chemosphere 167:462–468

    CAS  Google Scholar 

  • Manabu F, Andrew LR, Waite TD, Omura T (2006) Superoxide-mediated dissolution of amorphous ferric oxyhydroxide in seawater. Environ Sci Technol 40:880–887

    Google Scholar 

  • McWhinney RD, Zhou S, Abbatt JPD (2013) Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning. Atmos Chem Phys 13:9731–9744

    Google Scholar 

  • Mopper K, Zika RG (1987) Natural photosensitizers in sea water: riboflavin and its breakdown products. Photochem Environ Aquat Sys 13:174–190

    Google Scholar 

  • Pedersen DU, Durant JL, Taghizadeh K, Hemond HF, Lafleur AL, Cass GR (2005) Human cell mutagens in respirable airborne particles from the Northeastern United States. 2. Quantification of mutagens and other organic compounds. Environ Sci Technol 39:9547–9560

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325:516–518

    CAS  Google Scholar 

  • Peter E (1991) Effects of superoxide dismutase on the autoxidation of 1,4-hydroquinone. Chem Biol Interact 80:159–176

    Google Scholar 

  • Pillar EA, Guzman MI (2017) Oxidation of substituted catechols at the air−water interface: production of carboxylic acids, quinones, and polyphenols. Environ Sci Technol 51:4951–4959. https://doi.org/10.1021/acs.est.7b00232

    Article  CAS  Google Scholar 

  • Pillar EA, Guzman MI (2018) An overview of dynamic heterogeneous oxidations in the troposphere. Environ 5(9):104. https://doi.org/10.3390/environments5090104

    Article  Google Scholar 

  • Pillar EA, Camm RC, Guzman MI (2014) Catechol oxidation by ozone and hydroxyl radicals at the air-water interface. Environ Sci Technol 48:14352–14360. https://doi.org/10.1021/es504094x

    Article  CAS  Google Scholar 

  • Pillar EA, Zhou RX, Guzman MI (2015) Heterogeneous oxidation of catechol. J Phys Chem A 119:10349–10359. https://doi.org/10.1021/acs.jpca.5b07914

    Article  CAS  Google Scholar 

  • Putkiranta M, Manninen A, Rostedt A, Saarela J, Sorvajärvi T, Marjamäki M, Hernberg R, Keskinen J (2010) Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions. Appl Phys B Lasers Opt 99:841–851

    CAS  Google Scholar 

  • Rao PS, Hayon E (1973) Experimental determination of the redox potential of the superoxide radical O2•−. Biochem Biophys Res Commun 51:468–473

    CAS  Google Scholar 

  • Romuk E, Jachec W, Kozielska-Nowalany E, Birkner E, Zemła-Woszek A, Wojciechowska C (2019) Superoxide dismutase activity as a predictor of adverse outcomes in patients with nonischemic dilated cardiomyopathy. Cell Stress Chaperones 24:661–673

    Google Scholar 

  • Samoilova RI, Crofts AR, Dikanov SA (2011) Reaction of superoxide radical with quinone molecules. J Phys Chem A 115:11589–11593

    CAS  Google Scholar 

  • Samson AAS, Lee J, Song JM (2018) Inkjet printing-based photo-induced electron transfer reaction on parchment paper using riboflavin as a photosensitizer. Anal Chim Acta 1012:49–59

    CAS  Google Scholar 

  • Schuchmann MN, Bothe E, Sonntag JV, Sonntag CV (1998) Reaction of OH radicals with benzoquinone in aqueous solutions. A pulse radiolysis study. J Chem Soc Perkin Trans:791–796. https://doi.org/10.1039/a708772a

  • Sharma AK, Singh H, Chakrapani H (2019) Photocontrolled endogenous reactive oxygen species (ROS) generation. Chem Commun 55(36):5259–5262

    CAS  Google Scholar 

  • Suhybani AA, Hughes G (1986) Radiolysis of p-benzoquinone solutions I. Dearated solutions. J Radioanal Nucl Chem 98(1):17–29. https://doi.org/10.1007/bf02060429

    Article  Google Scholar 

  • Tang B, Wang Y, Chen ZZ (2002) Catalytic spectrofluorimetric determination of superoxide anion radical and superoxide dismutase activity using N,N-dimethylaniline as the substrate for horseradish peroxidase (HRP). Spectrochim Acta A 58:2557–2562

    Google Scholar 

  • Trevors JT (1980) Simple HPLC technique to detect p-benzoquinone and hydroquinone. Soil Biol Biochem 12:573–574

    CAS  Google Scholar 

  • Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Langenhove HV (2010) Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos Environ 44:1831–1846

    CAS  Google Scholar 

  • Willson RL (1971) Pulse radiolysis studies of electron transfer in aqueous quinone solutions. Trans Faraday Soc 167:3020–3029

    Google Scholar 

  • Wu YD, Li FB, Liu TX, Han R, Luo XB (2016) pH dependence of quinone-mediated extracellular electron transfer in a bioelectrochemical system. Electrochim Acta 213:408–415

    CAS  Google Scholar 

  • Ye MY, Robert HS (1990) Determination of oxidation products in radiolysis of halophenols with pulse radiolysis, HPLC, and ion chromatography. J Liq Chromatogr 13(17):3369–3387. https://doi.org/10.1080/01483919008049108

    Article  CAS  Google Scholar 

  • Yin LJ, Zhou HX, Lian LS, Yan SW, Song WH (2016) Effects of C60 on the photochemical formation of reactive oxygen species (ROS) from natural organic matter. Environ Sci Technol 50:11742–11751

    CAS  Google Scholar 

  • Zakavi S, Hoseini S, Mojarrad AG (2017) New insights into the influence of weak and strong acids on the oxidative stability and photocatalytic activity of porphyrins. New J Chem 41:11053–11059

    CAS  Google Scholar 

  • Zhao XJ, Hiroshi I, Zhan CJ, Yoshiteru S, Suehiro I, Teizo K (1997) Resonance Raman and FTIR spectra of isotope-labeled reduced 1,4-benzoquinone and its protonated forms in solutions. J Phys Chem A 101:622–631

    CAS  Google Scholar 

  • Zhao HQ, He Y, Zheng XL, Chen FR, Pang SP, Wang CX, Wang XR (2010) Water-soluble anions of atmosphere on Tianwan nuclear power station. Environ Sci 31(11):2563–2568

    Google Scholar 

Download references

Funding

This study received financial support from National Natural Science Foundation of China (NSFC) (21876038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhu Zhu.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Lu, J., Hu, Y. et al. Photochemical reactions between 1,4-benzoquinone and O2•−. Environ Sci Pollut Res 27, 31289–31299 (2020). https://doi.org/10.1007/s11356-020-09422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09422-8

Keywords

Navigation