Log in

Carbon storage potential and seasonal dynamics of phytolith from different vegetation types in a subtropical region, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Terrestrial biogeochemical silicon (Si) and carbon (C) cycles couple through various processes, such as silicate weathering and the dynamics resulting from different phytolith assemblages. For example, small amounts of organic C (typically ranging from 0.2 to 5.8%) can be occluded during phytolith formation. Phytoliths play an important role in coupled Si and C cycles. In this study, we analyzed variations in C sequestration and the seasonal dynamics of phytoliths formed in different vegetation types in order to clarify the processes and characteristics of phytolith-occluded-carbon (PhytOC) cycles. Firstly, we measured the variation range of phytolith content in the litter and soil of different vegetation types at 11.87–151.90 and 1.81–14.72 g kg−1, respectively, while we measured the corresponding variation range of PhytOC content at 3.58–24.13 and 0.04–0.65 g kg−1, respectively. We also found that seasonal changes in phytolith and PhytOC content were significant (P < 0.01), both exhibiting a significant decreasing trend from litter to soil and from the surface soil to 0–60 cm of soil layers. Secondly, we measured the variation range of PhytOC storage in the litter and soil (0–60 cm) of different vegetation types at 1.26–6.89 and 28.24–75.2 t, respectively. Finally, our study determined the contribution of PhytOC storage in soil (0.42%) compared with conventionally recognized soil C sequestration storage (0.64%). The phytolith C pool is an important component of the forest ecosystem C pool, which plays a critical role in mitigating global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  CAS  Google Scholar 

  • An XJ, Li P, Da W, Yin QY, Wang D (2012) The variation characteristics of soil organic carbon and its relationship with soil properties in typical subtropical plantations. Chin Agric Sci Bull 22:53–58 (In Chinese)

    Google Scholar 

  • Barré P, Berger G, Velde B (2009) How element translocation by plants may stabilize illitic clays in the surface of temperate soils. Geoderma 151:22–30

    Article  CAS  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283(7):641–683

    Article  CAS  Google Scholar 

  • Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20(3):1–11

    Article  CAS  Google Scholar 

  • Clarke J (2003) The occurrence and significance of biogenic opal in the regolith. Earth Sci Rev 60(3):175–194

    Article  CAS  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4):68-61–68-68

    Article  CAS  Google Scholar 

  • Dahlgren RA, Shoji S, Nanzyo M (1993) Mineralogical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren RA (eds) Volcanic ash soils, genesis, properties and utilization. Elsevier, New York, pp 101–145

    Chapter  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B 3rd, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258(3-4):197–206

    Article  CAS  Google Scholar 

  • Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014a) Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China. Agric For Meteorol 195-196:32–37

    Article  Google Scholar 

  • Gao Y, He NP, Yu GR, Chen WL, Wang QF (2014b) Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: a case study in China. Ecol Eng 67:171–181

    Article  Google Scholar 

  • Gao Y, Yu G, Yang TT, Jia YL, He NP, Zhuang J (2016) New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China. Earth Sci Rev 159:36–46

    Article  CAS  Google Scholar 

  • Guo QR, Yang GY, Du TZ, Shi JM (2005) Carbon character of Chinese bamboo forest. World Bamboo and Rattan 3:25–28. (In Chinese)

    Google Scholar 

  • Ha N, Hao Z, Xu YJ, Gao Y, Yu GR (2016) Nitrogen release from sediment under dry and rainy season alternation and its contribution to N export from **angxi Watershed in Jiangxi Province. Environ Sci 37(2):534–541 (In Chinese)

    Google Scholar 

  • Han N, Yang YF, Gao Y, Hao Z, Tian J, Yang TT, Song XW (2018) Determining phytolith-occluded organic carbon sequestration using an upgraded optimized extraction method: indicating for a missing carbon pool. Environ Sci Pollut Res 25(24):24507–24515

    Article  CAS  Google Scholar 

  • Hao Z, Gao Y, Zhang JZ, Xu YJ, Yu GR (2015) Characteristics of atmospheric nitrogen wet deposition and associated impact on n transport in the watershed of red soil area in southern China. Environ Sci 36(5):1630–1638 (In Chinese)

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  Google Scholar 

  • Huang CC, Wu WD, Liu RL, Xu QZ, Wang JM, Chen SZ (1995) A study of the quantities falling rates and compositions of different forest litters in Jiangxi province. Acta Agric Univ Jiangxiensis 17(4):477–482 (In Chinese)

    Google Scholar 

  • IPCC (2000) Land use, land-use change and forestry. Cambridge University Press, UK, 375

  • Janssens IA, Luyssaert S (2009) Carbon cycle: nitrogen’s carbon bonus. Nat Geosci 2:318–319

    Article  CAS  Google Scholar 

  • Jones LHP, Milne AA (1963) Studies of silica in the oat plant I. Chemical and physical properties of the silica. Plant Soil 18:207–220

    Article  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  Google Scholar 

  • Latorre F, Fernández Honaine M, Osterrieth M (2012) First report of phytoliths in the air of Argentina. Aerobiologia 28(1):61–69

    Article  Google Scholar 

  • Li DD, Lerman A, Mackenzie FT (2011) Human perturbations on the global biogeochemical cycles of coupled Si–C and responses of terrestrial processes and the coastal ocean. Appl Geochem 26:S289–S291

    Article  CAS  Google Scholar 

  • Li ZM, Song ZL, Jiang PK (2013a) Biogeochemical sequestration of carbon within phytoliths of slash plants: a case study of **xi Slash, China. Chin Sci Bull 58:1–8

    CAS  Google Scholar 

  • Li ZM, Song ZL, Parr JF, Wang HL (2013b) Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant Soil:1–9

  • Liu L, Jie D, Liu H, Li NN, Guo JX (2013) Response of phytoliths in Phragmites communis to humidity in NE China. Quat Int 304:193–199

    Article  Google Scholar 

  • Lu HY, Liu ZX, Wu NQ, Berne S, Saito Y, Liu BZ, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas 31(4):378–385

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  Google Scholar 

  • Ma JF (2003) Functions of silicon in higher plants[M]. In: Müller WEG (ed) Silicon Biomineralization. Springer Verlag, Berlin, pp 127–148

    Chapter  Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 342(1):165–171

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA, Quirk R (2009) Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech 11(1):17–21

  • Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic Press, London, p 280

    Google Scholar 

  • Piperno D (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira, California

    Google Scholar 

  • Prasad V, Strömberg C, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  CAS  Google Scholar 

  • Qi LM, Li YHF, Huang ZT, Jiang PK, Baoyin T, Wang HL (2017) Phytolith-occluded organic carbon as a mechanismfor long-term carbon sequestration in a typical steppe: the predominant role of belowground productivity. Sci Total Environ 577:413–417

    Article  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58

    Article  CAS  Google Scholar 

  • Smith P, Fang C (2010) Carbon cycle: a warm response by soils. Nature 464:499–500

    Article  CAS  Google Scholar 

  • Song ZL, Wang HL, Strong PJ, Li ZM, Jiang PK (2012a) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth Sci Rev 115:319–331

    Article  CAS  Google Scholar 

  • Song ZL, Liu HY, Si Y, Yin Y (2012b) The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Glob Chang Biol 18(12):3647–3653

    Article  Google Scholar 

  • Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process Landf 33:1436–1457

    Article  CAS  Google Scholar 

  • Strömberg C (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Paleogeogr Paleoclimatol Paleoecol 207:239–275

    Article  Google Scholar 

  • Tréguer P, Pondaven P (2000) Global change: silica control of carbon dioxide. Nature 406(6794):358–359

    Article  Google Scholar 

  • Tu J, Liu QJ, Wang HM, Liao YC, Li YY (2014) Dynamics of flow velocities and its relationship with methodological factors of Schima Superba Forest in Quantanzhou experimental station. Resour Environ Yangtze Basin 23(2):267–273 (In Chinese)

    Google Scholar 

  • Villada A, Vanguelova EI, Verhoef A, Shaw LJ (2016) Effect of air-drying pre-treatment on the characterization of forest soil carbon pools. Geoderma. 265:53–61

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1729–1747

    Google Scholar 

  • Wilding LP (1967) Radiocarbon dating of biogenetic opal. Science 156:66–67

    Article  CAS  Google Scholar 

  • Wilding LP, Bwown RE, Holowaychuk N (1967) Accessibility and properties of occluded carbon in biogenetic opal. Soil Sci 103(1):56–61

    Article  CAS  Google Scholar 

  • Zhang XD, Song ZL, Zhao ZQ, Van Zwieten L, Li JW, Liu L, Xu S, Wang HL (2016a) Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China. J Soils Sediments 17(2):481–490

    Article  CAS  Google Scholar 

  • Zhang XD, Song ZL, McGrouther K et al (2016b) The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils. J Soils Sediments 17(2):481–490

    Article  CAS  Google Scholar 

  • Zuo XX, Lu HY (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chin Sci Bull 56(32):3451–3456

    Article  CAS  Google Scholar 

  • Zuo XX, Lu HY, Gu ZY (2014) Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles. Plant Soil 374(1-2):223–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all anonymous reviewers for their helpful remarks and Prof. Doonan Brian for his help in writing this paper and providing useful suggestions.

Funding

This work was financially supported by the National Natural Science Foundation of China (41871080 and 51178439) and National Key Research & Development Program of China (2016YFE0127800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao.

Additional information

Responsible editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, F., **, J. et al. Carbon storage potential and seasonal dynamics of phytolith from different vegetation types in a subtropical region, China. Environ Sci Pollut Res 26, 29834–29844 (2019). https://doi.org/10.1007/s11356-019-06143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06143-5

Keywords

Navigation