Log in

An online SPE LC-MS/MS method for the analysis of antibiotics in environmental water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A fast and simple method for the analysis of 17 commonly used antibiotics in Finland in water samples was developed. The method combines online solid phase extraction using a reusable online trap** column combined with analytical separation on a C18 analytical column and detection by a triple quadrupole mass spectrometer. The method was fully validated for detection and quantification limits as well as linearity, repeatability, and matrix effects. The method gave an excellent linear response (r 2 > 0.99) and detection limits for all compounds (1–10 ng−1), except for tetracycline (20 ng l−1) and roxithromycin (50 ng l−1). The repeatability was evaluated at two concentrations, and the values at 5 ng l−1 ranged from 5 to 39% and at 100 ng l−1 ranged from 3 to 19%. To test the method on real samples at low environmental concentrations, water samples collected from a river receiving discharges from two wastewater treatment plants were analyzed as well as samples from a pristine river. Seven antibiotics as well as carbamazepine were detected in the samples. The concentration of the compounds ranged from 5 to 81 ng l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Choi K-J, Kim S-G, Kim C, Kim S-H (2007) Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere 66:977–984. doi:10.1016/j.chemosphere.2006.07.037

    Article  CAS  Google Scholar 

  • Choi K, Kim Y, Park J et al (2008) Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci Total Environ 405:120–128. doi:10.1016/j.scitotenv.2008.06.038

    Article  CAS  Google Scholar 

  • Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223. doi:10.1016/j.marpolbul.2004.10.038

    Article  CAS  Google Scholar 

  • da Silva BF, Jelic A, López-Serna R et al (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River Basin, Spain. Chemosphere 85:1331–1339. doi:10.1016/j.chemosphere.2011.07.051

    Article  Google Scholar 

  • Fimean uudistamat määräys 4/2013 Lääketurvatoiminta ja ohje 2/2013 Lääkkeiden haittavaikutusten ilmoittaminen - Uutinen - Fimea. http://www.fimea.fi/−/fimean-uudistamat-maarays-4-2013-laaketurvatoiminta-ja-ohje-2-2013-laakkeiden-haittavaikutusten-ilmoittaminen. Accessed 21 June 2016

  • Gracia-Lor E, Sancho JV, Hernández F (2011) Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1218:2264–2275. doi:10.1016/j.chroma.2011.02.026

    Article  CAS  Google Scholar 

  • Gullberg E, Cao S, Berg OG et al (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. doi:10.1371/journal.ppat.1002158

    Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518. doi:10.1021/ac015588m

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518. doi:10.1016/j.watres.2008.04.026

    Article  CAS  Google Scholar 

  • Khan GA, Lindberg R, Grabic R, Fick J (2012) The development and application of a system for simultaneously determining anti-infectives and nasal decongestants using on-line solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 66:24–32. doi:10.1016/j.jpba.2012.02.011

    Article  CAS  Google Scholar 

  • Laht M, Karkman A, Voolaid V et al (2014) Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 9:e103705. doi:10.1371/journal.pone.0103705

    Article  Google Scholar 

  • Lindholm-Lehto PC, Ahkola HSJ, Knuutinen JS, Herve SH (2015) Occurrence of pharmaceuticals in municipal wastewater, in the recipient water, and sedimented particles of northern Lake Päijänne. Environ Sci Pollut Res 22:17209–17223. doi:10.1007/s11356-015-4908-6

    Article  CAS  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289. doi:10.1016/j.scitotenv.2012.06.027

    Article  Google Scholar 

  • Managaki S, Murata A, Takada H et al (2007) Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ Sci Technol 41:8004–8010

    Article  CAS  Google Scholar 

  • O’Connell KMG, Hodgkinson JT, Sore HF et al (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed 52:10706–10733. doi:10.1002/anie.201209979

    Article  Google Scholar 

  • Peng X, Tan J, Tang C et al (2008) Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ Toxicol Chem 27:73–79. doi:10.1897/06-650.1

    Article  CAS  Google Scholar 

  • Pruden A (2014) Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol 48:5–14. doi:10.1021/es403883p

    Article  CAS  Google Scholar 

  • Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549. doi:10.1021/es302657r

    Article  CAS  Google Scholar 

  • Qarni HA, Collier P, O’Keeffe J, Akunna J (2016) Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environ Sci Pollut Res 23:13003–13014. doi:10.1007/s11356-016-6389-7

    Article  Google Scholar 

  • Tamtam F, Mercier F, Le Bot B et al (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95. doi:10.1016/j.scitotenv.2007.12.009

    Article  CAS  Google Scholar 

  • Valsecchi S, Polesello S, Mazzoni M et al (2015) On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends in Environmental Analytical Chemistry 8:27–37. doi:10.1016/j.teac.2015.08.001

    Article  CAS  Google Scholar 

  • Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography–tandem mass spectrometry detection. J Chromatogr A 1134:101–111. doi:10.1016/j.chroma.2006.08.077

    Article  CAS  Google Scholar 

  • Xue Q, Qi Y, Liu F (2015) Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters. Environ Sci Pollut Res 22:16857–16867. doi:10.1007/s11356-015-4900-1

    Article  CAS  Google Scholar 

  • Zuccato E, Castiglioni S, Fanelli R (2005) Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205–209. doi:10.1016/j.jhazmat.2005.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Finnish Graduate School for Environmental Sciences and Technology, the Kone Foundation, and Maa-ja Vesitekniikan Tuki Ry (grant number 31943) are kindly acknowledge for their financial support. Jari Männynsalo, Heli Vahtera, and Kirsti Lahti from the Water Protection Association of the River Vantaa and Helsinki Region are acknowledged for their assistance with the sample collection. This work is part of the activities at the Johan Gadolin Process Chemistry Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meierjohann Axel.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axel, M., Ewelina, K., Jenny-Maria, B. et al. An online SPE LC-MS/MS method for the analysis of antibiotics in environmental water. Environ Sci Pollut Res 24, 8692–8699 (2017). https://doi.org/10.1007/s11356-017-8588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8588-2

Keywords

Navigation