Log in

Non-Associated Flow Rule Constitutive Modeling Considering Anisotropic Hardening for the Forming Analysis of Orthotropic Sheet Metal

  • Review Article
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The evolution of anisotropy has an important influence on the forming of parts under large deformation. However, most of the current yield criteria do not consider the evolution.

Objective

An anisotropic constitutive model based on non-associated flow rule (non-AFR) was established for orthotropic sheet metal. The classical quadratic Hill48 model was used to describe the yield anisotropy and plastic deformation anisotropy, respectively.

Methods

According to the principle of equivalent plastic work, the existence and significance of anisotropy evolution with plastic deformation were revealed. In order to improve the prediction accuracy of the model, a continuous capture scheme considering anisotropic hardening was proposed.

Results

The evolution of directional yield stress, directional r-value and yield locus was well captured by the developed model. To further verify the model, square box deep drawing tests of different strokes of the punch were carried out. Compared with the experimental results, the developed model could predict the material flow behavior in flange area and thickness thinning behavior, which actually reflected the evolution behavior of directional flow stress and directional r-value of sheet metal respectively.

Conclusion

The developed model improves the prediction accuracy of anisotropic sheet metal forming, and can provide an effective reference scheme for large deformation problems in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

\(\phi\) :

Yield criteria

σ :

Cauchy stress tensor

\(\bar \sigma ({\bar \varepsilon_p})\) :

Equivalent stress-strain relationship of uniaxial tension

\({\bar \varepsilon_p}\) :

Equivalent plastic strain

\({f_y}\) :

Equivalent stress of yield function

\({f_p}\) :

Equivalent stress of potential function

\(\boldsymbol d{\boldsymbol\varepsilon}_p\)  :

Plastic strain increment

\(d\lambda\) :

Plastic multiplier increment

m :

First order gradient of the yield function

n :

First order gradient of the potential function

dw :

Equivalent plastic work increment

d σ :

Stress tensor increment

\({\boldsymbol C}_{e}\)  :

Elastic stiffness matrix

\(\boldsymbol d{\boldsymbol\varepsilon}_e\)  :

Elastic strain increment

\(\boldsymbol d\boldsymbol\varepsilon\)  :

Strain tensor increment

F σ,  G σ,  H σL σ,  M σ,  N σ :

Anisotropic parameters of yield function

F r,  G r,  H r,  L r,  M r,  N r :

Anisotropic parameters of potential function

X:Y :

Tensor double contraction operation of X and Y

References

  1. Banabic D, Kuwabara T, Balan T, Comsa DS, Julean D (2003) Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int J Mech Sci 45(5):797–811. https://doi.org/10.1016/S0020-7403(03)00139-5

    Article  Google Scholar 

  2. Banabic D, Aretz H, Comsa DS, Paraianu L (2005) An improved analytical de scription of orthotropy in metallic sheets. Int J Plast 21(3):493–512. https://doi.org/10.1016/j.ijplas.2004.04.003

    Article  CAS  Google Scholar 

  3. Barlat F, Lian J (1989) Plastic behavior and stretchability of sheet metals, Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5:51–66. https://doi.org/10.1016/0749-6419(89)90019-3

    Article  Google Scholar 

  4. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7(7):693–712. https://doi.org/10.1016/0749-6419(91)90052-Z

    Article  CAS  Google Scholar 

  5. Barlat F, Maeda Y, Chung K, Yanagawa M, Brem JC, Hayashida Y, Makosey S (1997) Yield function development for aluminum alloy sheets. J Mech Phys Solids 45(11–12):1727–1763. https://doi.org/10.1016/S0022-5096(97)00034-3

    Article  CAS  Google Scholar 

  6. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Chu E (2003) Plane stress yield function for aluminum alloy sheets – Part 1: Theory. Int J Plast 19(9):1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0

    Article  CAS  Google Scholar 

  7. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21(5):1009–1039. https://doi.org/10.1016/j.ijplas.2004.06.004

    Article  CAS  Google Scholar 

  8. Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast 23(5):876–896. https://doi.org/10.1016/j.ijplas.2006.10.001

    Article  CAS  Google Scholar 

  9. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22(7):1171–1194. https://doi.org/10.1016/j.ijplas.2005.06.001

    Article  CAS  Google Scholar 

  10. Cvitanić V, Vlak F, Lozina Ž (2008) A finite element formulation based on non-associated plasticity for sheet metal forming. Int J Plast 24:646–687. https://doi.org/10.1016/j.ijplas.2007.07.003

    Article  CAS  Google Scholar 

  11. Du K, Huang S, Hou Y, Wang H, Wang Y, Zheng W (2023) Characterization of the asymmetric evolving yield and flow of 6016–t4 aluminum alloy and dp490 steel. J Mater Sci Technol 154:103302. https://doi.org/10.1016/j.jmst.2022.05.040

    Article  CAS  Google Scholar 

  12. Gao X, Zhang T, Zhou J, Graham SM, Hayden M, Roe C (2011) On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int J Plast 27(2):217–231. https://doi.org/10.1016/j.ijplas.2010.05.004

    Article  CAS  Google Scholar 

  13. Gawad J, Banabic D, Van BA, Comsa DS, Gologanu M, Eyckens P, Roose D (2015) An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int J Plast 75:141–169. https://doi.org/10.1016/j.ijplas.2015.02.011

    Article  CAS  Google Scholar 

  14. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Math Proc Cambridge Philos Soc 193:281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  MathSciNet  CAS  Google Scholar 

  15. Hill R (1979) Theoretical plasticity of textured aggregates. Math Proc Cambridge Philos Soc 85(01):179–191. https://doi.org/10.1017/S0305004100055596

    Article  MathSciNet  Google Scholar 

  16. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38(3):405–417. https://doi.org/10.1016/0022-5096(90)90006-P

    Article  MathSciNet  Google Scholar 

  17. Hill R (1993) A user-friendly theory of orthotropic plasticity in sheet metals. Int J Mech Sci 35(1):19–25. https://doi.org/10.1016/0020-7403(93)90061-X

    Article  Google Scholar 

  18. Hill R, Hutchinson JW (1992) Differential hardening in sheet-metal under biaxial loading–a Theoretical framework. J Appl Mech 59(2s):s1–s9. https://doi.org/10.1115/1.2899489

    Article  Google Scholar 

  19. Hu W (2007) Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy. Int J Plast 23:620–639. https://doi.org/10.1016/j.ijplas.2006.08.004

    Article  CAS  Google Scholar 

  20. Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41(12):1859–1886. https://doi.org/10.1016/0022-5096(93)90073-O

    Article  CAS  Google Scholar 

  21. Khalfallah A, Alves JL, Oliveira MC, Menezes LF (2015) Influence of the characteristics of the experimental data set used to identify anisotropy parameters. Simul Model Pract Theory 53:15–44. https://doi.org/10.1016/j.simpat.2015.02.007

    Article  Google Scholar 

  22. Khalfallah A, Oliveira MC, Alves JL, Menezes LF (2020) Constitutive parameter identification of CB2001 yield function and its experimental verification using tube hydroforming tests. Int J Mech Sci 185:105868. https://doi.org/10.1016/j.ijmecsci.2020.105868

    Article  Google Scholar 

  23. Lee EH, Stoughton TB, Yoon JW (2017) A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int J Plast 99:120–143. https://doi.org/10.1016/j.ijplas.2017.08.007

    Article  Google Scholar 

  24. Lou Y, Whan J (2018) Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. Int J Plast 101:125–155. https://doi.org/10.1016/j.ijplas.2017.10.012

    Article  CAS  Google Scholar 

  25. Lou Y, Huh H, Whan J (2013) Consideration of strength differential effect in sheet metals with symmetric yield functions. Int J Mech Sci 66:214–223. https://doi.org/10.1016/j.ijmecsci.2012.11.010

    Article  Google Scholar 

  26. Min J, Carsley JE, Lin J, Wen Y, Kuhlenkötter B (2016) A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: Modeling and experimental validation. Int J Mech Sci 119:343–359. https://doi.org/10.1016/j.ijmecsci.2016.10.027

    Article  Google Scholar 

  27. Mu Z, Zhao J, Meng Q, Sun H, Yu G (2022) Anisotropic hardening and evolution of r-values for sheet metal based on evolving non-associated Hill48 model. Thin-Walled Struct 171:108791. https://doi.org/10.1016/j.tws.2021.108791

    Article  Google Scholar 

  28. Park N, Stoughton TB, Yoon JW (2019) A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule. Int J Plast 121:76–100. https://doi.org/10.1016/j.ijplas.2019.04.015

    Article  Google Scholar 

  29. Prates PA, Oliveira MC, Fernandes JV (2014) A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test. Comput Mater Sci 85:102–120. https://doi.org/10.1016/j.commatsci.2013.12.043

    Article  Google Scholar 

  30. Prates PA, Oliveira MC, Fernandes JV (2016) Identification of material parameters for thin sheets from single biaxial tensile test using a sequential inverse identification strategy. IntJ Mater Form 9(4):547–571. https://doi.org/10.1007/s12289-015-1241-z

    Article  Google Scholar 

  31. Safaei M, Lee M, Zang S, Waele WD (2014) An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach. Comput Mater Sci 81:15–29. https://doi.org/10.1016/j.commatsci.2013.05.035

    Article  CAS  Google Scholar 

  32. Shi B, Mosler J (2013) On the macroscopic description of yield surface evolution by means of distortional hardening models: Application to magnesium. Int J Plast 44:1–22. https://doi.org/10.1016/j.ijplas.2012.11.007

    Article  CAS  Google Scholar 

  33. Smith J, Liu WK, Cao J (2015) A general anisotropic yield criterion for pressure-dependent materials. Int J Plast 75:2–21. https://doi.org/10.1016/j.ijplas.2015.08.009

    Article  CAS  Google Scholar 

  34. Soare SC, Yoon JW, Cazacu O, Barlat F (2007) Applications of a recently proposed anisotropic yield function to sheet forming. In: Advanced Methods in Material Forming. Springer. https://doi.org/10.1007/3-540-69845-0_8

  35. Spitzig WA, Richmond O (1984) The effect of pressure on the flow stress of metals. Acta Metall 32(3):457–463. https://doi.org/10.1016/0001-6160(84)90119-6

    Article  CAS  Google Scholar 

  36. Stoughton TB (2002) A non-associated flow rule for sheet metal forming. Int J Plast 18(5–6):687–714. https://doi.org/10.1016/S0749-6419(01)00053-5

    Article  Google Scholar 

  37. Stoughton TB, Yoon JW (2004) A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming. Int J Plast 20(4–5):705–731. https://doi.org/10.1016/S0749-6419(03)00079-2

    Article  CAS  Google Scholar 

  38. Stoughton TB, Yoon JW (2006) Review of Drucker’s postulate and the issue of plastic stability in metal forming. Int J Plast 22(3):391–433. https://doi.org/10.1016/j.ijplas.2005.03.002

    Article  CAS  Google Scholar 

  39. Stoughton TB, Yoon JW (2008) On the existence of indeterminate solutions to the equations of motion under non-associated flow. Int J Plast 24(4):583–613. https://doi.org/10.1016/j.ijplas.2007.07.002

    Article  CAS  Google Scholar 

  40. Stoughton TB, Yoon JW (2009) Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast 25:1777–1817. https://doi.org/10.1016/j.ijplas.2009.02.003

    Article  CAS  Google Scholar 

  41. Taherizadeh A, Green DE, Yoon JW (2011) Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. Int J Plast 27(11):1781–1802. https://doi.org/10.1016/j.ijplas.2011.05.001

    Article  CAS  Google Scholar 

  42. Taherizadeh A, Green DE, Yoon JW (2010) A non-associated plasticity model with anisotropic and nonlinear kinematic hardening for simulation of sheet metal forming. Int J Solids Struct 69–70(2):370–382. https://doi.org/10.1016/j.ijsolstr.2015.05.013

    Article  CAS  Google Scholar 

  43. Wu B, Ito K, Mori N, Oya T, Taylor T, Yanagimoto J (2019) Constitutive equations based on non-associated flow rule for the analysis of forming of anisotropic sheet metals. Int J Precis Eng Manuf-Green Technol 7(2):465–480. https://doi.org/10.1007/s40684-019-00032-5

    Article  Google Scholar 

  44. Wu B, Wang H, Taylor T, Yanagimoto J (2020) A non-associated constitutive model considering anisotropic hardening for orthotropic anisotropic materials in sheet metal forming. Int J Mech Sci 169:105320. https://doi.org/10.1016/j.ijmecsci.2019.105320

    Article  Google Scholar 

  45. Yoon JW, Lou Y, Yoon J, Glazoff MV (2014) Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int J Plast 56:184–202. https://doi.org/10.1016/j.ijplas.2013.11.008

    Article  CAS  Google Scholar 

  46. Yoshida F, Hamasaki H, Uemori T (2015) Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect. Int J Plast 75:170–188. https://doi.org/10.1016/j.ijplas.2015.02.004

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded and supported by National Natural Science Foundation of China (51975509 and 52205353).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Duan or Z. Mu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Duan, Y., Mu, Z. et al. Non-Associated Flow Rule Constitutive Modeling Considering Anisotropic Hardening for the Forming Analysis of Orthotropic Sheet Metal. Exp Mech 64, 305–323 (2024). https://doi.org/10.1007/s11340-024-01032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-024-01032-6

Keywords

Navigation