Log in

Supraspinatus activation precedes the infraspinatus muscle during the shoulder abduction in different levels of handgrip strengths

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

It is unknown whether the effect of increased distal stabilization can trigger the onset of the supraspinatus and infraspinatus muscles, and if handgrip strength levels can elicit early proximal shoulder stabilization. Hence, we aimed to compare the electromyography activation of the Supraspinatus and Infraspinatus muscles during the abduction motion with handgrip strength in different levels (0%, 30%, and 60%) of maximal voluntary isometric contraction (MVIC).

Methods

Twenty participants were submitted to abduction shoulder movement with three different handgrip strengths (0%, 30%, and 60%) using electromyography. The onset of Supraspinatus and Infraspinatus muscles was measured. A Friedman’s test was used to compare handgrip conditions and the onset between muscles. Then, multiple comparisons were performed. All alpha errors were set to 5%.

Results

There was an anticipated onset for Supraspinatus muscle at 0% of the MVIC {− 0.554 [− 0.657 to − 0.497] ms vs. − 0.098 [− 0.264 to 0.108] ms, p < 0.001}, at 30% of the MVIC {− 0.560 [− 0.628 to − 0.521] ms vs. − 0.125 [− 0.243 to − 0.031] ms, p < 0.001), and at 60% of the MVIC {− 0.543 [− 0.573 to − 0.514] ms vs. − 0.215 [− 0.325 to − 0.017] ms, p = 0.001}.

Conclusion

Shoulder abduction with handgrip triggers the onset of the Supraspinatus and Infraspinatus muscles. The Supraspinatus muscle elicits an anticipated onset. Two stabilizing strategies are suggested; the internal rotation instability capable be induced by the deltoid muscles (abduction movement) and from the wrist flexor-pronator muscles (handgrip). Both tasks are counteracted and anticipated by the action of the Supraspinatus and Infraspinatus muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muratori LM, Lamberg EM, Quinn L, Duff SV (2013) Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther 26:94–102. https://doi.org/10.1016/j.jht.2012.12.007 (quiz 103)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Day A, Taylor NF, Green RA (2012) The stabilizing role of the rotator cuff at the shoulder–responses to external perturbations. Clin Biomech (Bristol, Avon) 27:551–556. https://doi.org/10.1016/j.clinbiomech.2012.02.003

    Article  CAS  Google Scholar 

  3. Reinold MM, Escamilla RF, Wilk KE (2009) Current concepts in the scientific and clinical rationale behind exercises for glenohumeral and scapulothoracic musculature. J Orthop Sports Phys Ther 39:105–117. https://doi.org/10.2519/jospt.2009.2835

    Article  PubMed  Google Scholar 

  4. Veeger HEJ, van der Helm FCT (2007) Shoulder function: the perfect compromise between mobility and stability. J Biomech 40:2119–2129. https://doi.org/10.1016/j.jbiomech.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  5. Matsen FA, Chebli C, Lippitt S, American Academy of Orthopaedic Surgeons (2006) Principles for the evaluation and management of shoulder instability. J Bone Joint Surg Am 88:648–659. https://doi.org/10.2106/00004623-200603000-00026

    Article  PubMed  Google Scholar 

  6. Wickham J, Pizzari T, Stansfeld K et al (2010) Quantifying “normal” shoulder muscle activity during abduction. J Electromyogr Kinesiol 20:212–222. https://doi.org/10.1016/j.jelekin.2009.06.004

    Article  PubMed  Google Scholar 

  7. Saeterbakken AH, Stien N, Pedersen H et al (2021) The effect of grip width on muscle strength and electromyographic activity in bench press among novice- and resistance-trained men. Int J Environ Res Public Health 18:6444. https://doi.org/10.3390/ijerph18126444

    Article  PubMed  PubMed Central  Google Scholar 

  8. Linaker CH, Walker-Bone K (2015) Shoulder disorders and occupation. Best Pract Res Clin Rheumatol 29:405–423. https://doi.org/10.1016/j.berh.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lewis CL, Laudicina NM, Khuu A, Loverro KL (2017) The human pelvis: variation in structure and function during gait. Anat Rec (Hoboken) 300:633–642. https://doi.org/10.1002/ar.23552

    Article  Google Scholar 

  10. Escamilla RF, Yamashiro K, Paulos L, Andrews JR (2009) Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med 39:663–685. https://doi.org/10.2165/00007256-200939080-00004

    Article  PubMed  Google Scholar 

  11. Cricchio M, Frazer C (2011) Scapulothoracic and scapulohumeral exercises: a narrative review of electromyographic studies. J Hand Ther 24:322–333. https://doi.org/10.1016/j.jht.2011.06.001 (quiz 334)

    Article  PubMed  Google Scholar 

  12. Kang J-I, Moon Y-J, Choi H et al (2016) The effect of exercise types for rotator cuff repair patients on activities of shoulder muscles and upper limb disability. J Phys Ther Sci 28:2772–2777. https://doi.org/10.1589/jpts.28.2772

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alizadehkhaiyat O, Fisher AC, Kemp GJ et al (2011) Shoulder muscle activation and fatigue during a controlled forceful hand grip task. J Electromyogr Kinesiol 21:478–482. https://doi.org/10.1016/j.jelekin.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  14. Horsley I, Herrington L, Hoyle R et al (2016) Do changes in hand grip strength correlate with shoulder rotator cuff function? Shoulder Elbow 8:124–129. https://doi.org/10.1177/1758573215626103

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sporrong H, Palmerud G, Herberts P (1996) Hand grip increases shoulder muscle activity, an EMG analysis with static hand contractions in 9 subjects. Acta Orthop Scand 67:485–490. https://doi.org/10.3109/17453679608996674

    Article  CAS  PubMed  Google Scholar 

  16. Sporrong H, Palmerud G, Herberts P (1995) Influences of handgrip on shoulder muscle activity. Eur J Appl Physiol Occup Physiol 71:485–492. https://doi.org/10.1007/BF00238549

    Article  CAS  PubMed  Google Scholar 

  17. Shenouda M, El-Tokhy M (2014) Efficacy of hand grip strength on supraspinatus muscle activity in patients with shoulder im**ement syndrome. Indian J Physiother Occup Ther 8(1):187–197. https://doi.org/10.5958/j.0973-5674.8.1.036

    Article  Google Scholar 

  18. Rodriguez-Yunta E (2004) Committees of ethical and scientific evaluation for research in human beings and the guidelines CIOMS 2002. Acta bioeth 10(1):37–47. https://doi.org/10.4067/S1726-569X2004000100005

    Article  Google Scholar 

  19. Armstrong CA, Oldham JA (1999) A comparison of dominant and non-dominant hand strengths. J Hand Surg Br 24:421–425. https://doi.org/10.1054/jhsb.1999.0236

    Article  CAS  PubMed  Google Scholar 

  20. Gerodimos V, Karatrantou K, Psychou D et al (2017) Static and dynamic handgrip strength endurance: test-retest reproducibility. J Hand Surg Am 42:e175–e184. https://doi.org/10.1016/j.jhsa.2016.12.014

    Article  PubMed  Google Scholar 

  21. John B, de Luca C (1985) Muscles alive: their functions revealed by electromyography, 5th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  22. Perotto A, Delagi E, Iazzetti J, Morrison D (2005) Anatomical guide for the electromyographer: the limbs and trunk, illustrated ed. Charles C Thomas Publisher, LTD, Springfield

    Google Scholar 

  23. Criswell E, Cram J (2010) CRAM’S introduction to surface electromyography, 2nd ed. Jones and Bartlett Publishers, LLC, Sadbury

    Google Scholar 

  24. Papagiannis GI, Triantafyllou AI, Roumpelakis IM et al (2019) Methodology of surface electromyography in gait analysis: review of the literature. J Med Eng Technol 43:59–65. https://doi.org/10.1080/03091902.2019.1609610

    Article  PubMed  Google Scholar 

  25. Glousman R, Jobe F, Tibone J et al (1988) Dynamic electromyographic analysis of the throwing shoulder with glenohumeral instability. J Bone Joint Surg Am 70:220–226

    Article  CAS  Google Scholar 

  26. Myers JB, Riemann BL, Ju Y-Y et al (2003) Shoulder muscle reflex latencies under various levels of muscle contraction. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200302000-00017

    Article  PubMed  Google Scholar 

  27. Cools AM, Witvrouw EE, Declercq GA et al (2003) Scapular muscle recruitment patterns: trapezius muscle latency with and without im**ement symptoms. Am J Sports Med 31:542–549. https://doi.org/10.1177/03635465030310041101

    Article  PubMed  Google Scholar 

  28. David G, Magarey ME, Jones MA et al (2000) EMG and strength correlates of selected shoulder muscles during rotations of the glenohumeral joint. Clin Biomech (Bristol, Avon) 15:95–102. https://doi.org/10.1016/s0268-0033(99)00052-2

    Article  CAS  Google Scholar 

  29. Rajaratnam BS, Goh JC, Kumar PV (2013) Control strategies to re-establish glenohumeral stability after shoulder injury. BMC Sports Sci Med Rehabil 5:26. https://doi.org/10.1186/2052-1847-5-26

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vosloo M, Keough N, De Beer MA (2017) The clinical anatomy of the insertion of the rotator cuff tendons. Eur J Orthop Surg Traumatol 27:359–366. https://doi.org/10.1007/s00590-017-1922-z

    Article  CAS  PubMed  Google Scholar 

  31. Seo NJ, Armstrong TJ, Ashton-Miller JA, Chaffin DB (2008) Wrist strength is dependent on simultaneous power grip intensity. Ergonomics 51:1594–1605. https://doi.org/10.1080/00140130802216925

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davidson PA, Pink M, Perry J, Jobe FW (1995) Functional anatomy of the flexor pronator muscle group in relation to the medial collateral ligament of the elbow. Am J Sports Med 23:245–250. https://doi.org/10.1177/036354659502300220

    Article  CAS  PubMed  Google Scholar 

  33. Antony NT, Keir PJ (2010) Effects of posture, movement and hand load on shoulder muscle activity. J Electromyogr Kinesiol 20:191–198. https://doi.org/10.1016/j.jelekin.2009.04.010

    Article  PubMed  Google Scholar 

  34. Reed D, Cathers I, Halaki M, Ginn K (2013) Does supraspinatus initiate shoulder abduction? J Electromyogr Kinesiol 23:425–429. https://doi.org/10.1016/j.jelekin.2012.11.008

    Article  PubMed  Google Scholar 

  35. Phillips D, Kosek P, Karduna A (2018) The contribution of the supraspinatus muscle at sub-maximal contractions. J Biomech 68:65–69. https://doi.org/10.1016/j.jbiomech.2017.12.015

    Article  PubMed  Google Scholar 

  36. Alpert SW, Pink MM, Jobe FW et al (2000) Electromyographic analysis of deltoid and rotator cuff function under varying loads and speeds. J Shoulder Elbow Surg 9:47–58. https://doi.org/10.1016/s1058-2746(00)90009-0

    Article  CAS  PubMed  Google Scholar 

  37. Dyrna F, Kumar NS, Obopilwe E et al (2018) Relationship between deltoid and rotator cuff muscles during dynamic shoulder abduction: a biomechanical study of rotator cuff tear progression. Am J Sports Med 46:1919–1926. https://doi.org/10.1177/0363546518768276

    Article  PubMed  Google Scholar 

  38. Spall P, Ribeiro DC, Sole G (2016) Electromyographic activity of shoulder girdle muscles in patients with symptomatic and asymptomatic rotator cuff tears: a systematic review and meta-analysis. PM R 8:894–906. https://doi.org/10.1016/j.pmrj.2016.02.015

    Article  PubMed  Google Scholar 

  39. Veen EJD, Koorevaar CT, Verdonschot KHM et al (2021) Compensatory movement patterns are based on abnormal activity of the biceps brachii and posterior deltoid muscles in patients with symptomatic rotator cuff tears. Clin Orthop Relat Res 479:378–388. https://doi.org/10.1097/CORR.0000000000001555

    Article  PubMed  Google Scholar 

  40. Sperling L, Dahlman S, Wikström L et al (1993) A cube model for the classification of work with hand tools and the formulation of functional requirements. Appl Ergon 24:212–220. https://doi.org/10.1016/0003-6870(93)90009-x

    Article  CAS  PubMed  Google Scholar 

  41. Wattanaprakornkul D, Cathers I, Halaki M, Ginn KA (2011) The rotator cuff muscles have a direction specific recruitment pattern during shoulder flexion and extension exercises. J Sci Med Sport 14:376–382. https://doi.org/10.1016/j.jsams.2011.01.001

    Article  PubMed  Google Scholar 

Download references

Funding

The authors do not have any financial. This research did not receive any grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos De la Fuente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the IRB of the MEDS clinic (Santiago, Chile) and the CEC of SS.OO. (Santiago, Chile) with reference number #16122016.

Informed consent

All participants gave their written informed consent to be enrolled in this study.

Consent for publication

All authors declare that they have contributed significantly to this manuscript. Also, the authors authorized this manuscript to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, J., Droppelmann, G., Silvestre, R. et al. Supraspinatus activation precedes the infraspinatus muscle during the shoulder abduction in different levels of handgrip strengths. Sport Sci Health 18, 915–921 (2022). https://doi.org/10.1007/s11332-021-00875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00875-z

Keywords

Navigation