Log in

The effect of continuous positive airway pressure on total antioxidant capacity in obstructive sleep apnea: a systematic review and meta-analysis

  • Sleep Breathing Physiology and Disorders • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Background

Obstructive sleep apnea (OSA), a sleep-related disorder with high prevalence, is associated with an imbalance in oxidative stress and is linked to cardiovascular disease. There are conflicting reports regarding the effectiveness of continuous positive airway pressure (CPAP) therapy on oxidative stress/antioxidant markers in patients with OSA. This review was performed to evaluate the influence of therapy with CPAP on serum/plasma total antioxidant capacity (TAC) in patients with OSA.

Methods

The Cochrane Library, Web of Science, Scopus, Embase, and PubMed were searched through June 2022 to obtain studies evaluating CPAP treatment on TAC in patients with OSA. Overall results were tested using standardized mean difference (SMD) with a 95% confidence interval (CI). Comprehensive Meta-Analysis V2 software was employed to perform analyses.

Results

Ten studies with 12 effect sizes were eligible for inclusion in this analysis. The overall SMD revealed that CPAP therapy significantly increased TAC [SMD 0.497; 95% CI: 0.21 to 0.77; p: 0.00] in OSA. Analyses based on subgroups showed that the effect of CPAP therapy was significant in all subgroups according to therapy duration, age, BMI, and AHI. Whereas the meta-regression results indicated that the impact of therapy with CPAP on TAC is associated with AHI, BMI, and age in patients with OSA.

Conclusions

The finding of this meta-analysis demonstrated a favorable impact of CPAP therapy on TAC levels in patients suffering from OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author (Reza Fadaei and Habibolah Khazaie).

References

  1. Gottlieb DJ (2021) Sleep apnea and cardiovascular disease. Curr Diab Rep 21(12):64

    PubMed  PubMed Central  Google Scholar 

  2. Edinger JD, Arnedt JT, Bertisch SM, Carney CE, Harrington JJ, Lichstein KL et al (2021) Behavioral and psychological treatments for chronic insomnia disorder in adults: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 17(2):255–262

    PubMed  PubMed Central  Google Scholar 

  3. Celikhisar H, Dasdemir IG (2020) Comparison of clinical and polysomnographic characteristics in young and old patients with obstructive sleep apnea syndrome. Aging Male 23(5):1202–1209

    PubMed  Google Scholar 

  4. Yamauchi M, Nakano H, Maekawa J, Okamoto Y, Ohnishi Y, Suzuki T et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679

    CAS  PubMed  Google Scholar 

  5. Stanek A, Brożyna-Tkaczyk K, Myśliński W (2021) Oxidative stress markers among obstructive sleep apnea patients. Oxidative Medicine and Cellular Longevity. 2021;2021.

  6. Shitara J, Kasai T (2022) Obstructive sleep apnea and cardiovascular disease. Noninvasive ventilation in sleep medicine and pulmonary critical care: Springer; 2020. p. 223–33.

  7. Maniaci A, Iannella G, Cocuzza S, Vicini C, Magliulo G, Ferlito S et al (2021) Oxidative stress and inflammation biomarker expression in obstructive sleep apnea patients. J Clin Med 10(2):277

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baran R, Grimm D, Infanger M, Wehland M (2021) The effect of continuous positive airway pressure therapy on obstructive sleep apnea-related hypertension. Int J Mol Sci 22(5):2300

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Iannella G, Magliulo G, Di Luca M, De Vito A, Meccariello G, Cammaroto G et al (2020) Lateral pharyngoplasty techniques for obstructive sleep apnea syndrome: a comparative experimental stress test of two different techniques. Eur Arch Otorhinolaryngol 277(6):1793–1800

    PubMed  Google Scholar 

  10. Sánchez-de-la-Torre M, Sánchez-de-la-Torre A, Bertran S, Abad J, Duran-Cantolla J, Cabriada V et al (2020) Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med 8(4):359–367

    PubMed  Google Scholar 

  11. Murri M, Garcia-Delgado R, Alcázar-Ramirez J, Linde F, Fernández-Ramos A, Cardona F et al (2010) Assessment of cellular and plasma oxidative stress in SAHS patients before and after continuous positive airway pressure treatment. Clin Lab J Clin Lab Lab Related 56(9):397

    CAS  Google Scholar 

  12. Celec P, Hodosy J, Behuliak M, Pálffy R, Gardlík R, Halčák L et al (2012) Oxidative and carbonyl stress in patients with obstructive sleep apnea treated with continuous positive airway pressure. Sleep Breath 16(2):393–398

    PubMed  Google Scholar 

  13. Dursun A, Okumuş N, Erol S, Bayrak T, Zenciroğlu A (2016) Effect of ventilation support on oxidative stress and ischemia-modified albumin in neonates. Am J Perinatol 33(02):136–142

    PubMed  Google Scholar 

  14. Murri M, García-Delgado R, Alcázar-Ramírez J, De Rota LF, Fernández-Ramos A, Cardona F et al (2011) Continuous positive airway pressure therapy reduces oxidative stress markers and blood pressure in sleep apnea–hypopnea syndrome patients. Biol Trace Elem Res 143(3):1289–1301

    CAS  PubMed  Google Scholar 

  15. Hodosy J, Mucska I, Celec P (2014) Salivary markers of oxidative stress in patients with obstructive sleep apnea treated with continuous positive airway pressure. Sleep Breath 18(3):563–570

    PubMed  Google Scholar 

  16. Murri M, Alcázar-Ramírez J, Garrido-Sánchez L, Linde F, Alcaide J, Cardona F et al (2009) Oxidative stress and metabolic changes after continuous positive airway pressure treatment according to previous metabolic disorders in sleep apnea-hypopnea syndrome patients. Transl Res 154(3):111–121

    CAS  PubMed  Google Scholar 

  17. Monneret D, Tamisier R, Ducros V, Faure P, Halimi S, Baguet J et al (2016) Glucose tolerance and cardiovascular risk biomarkers in non-diabetic non-obese obstructive sleep apnea patients: effects of long-term continuous positive airway pressure. Respir Med 112:119–125

    CAS  PubMed  Google Scholar 

  18. Stradling JR, Schwarz EI, Schlatzer C, Manuel AR, Lee R, Antoniades C et al (2015) Biomarkers of oxidative stress following continuous positive airway pressure withdrawal: data from two randomised trials. Eur Respir J 46(4):1065–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang HH, Kim IK, Lee SH (2019) Total oxidant and antioxidant status in patients with obstructive sleep apnea and the effect of continuous positive airway pressure. Chronobiol Med 1(3):126–129

    Google Scholar 

  20. Barcelo A, Barbe F, De la Peña M, Vila M, Perez G, Pierola J et al (2006) Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur Respir J 27(4):756–760

    CAS  PubMed  Google Scholar 

  21. Katsoulis K, Kontakiotis T, Spanogiannis D, Vlachogiannis E, Kougioulis M, Gerou S et al (2011) Total antioxidant status in patients with obstructive sleep apnea without comorbidities: the role of the severity of the disease. Sleep Breath 15(4):861–866

    PubMed  Google Scholar 

  22. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34

    PubMed  Google Scholar 

  23. Sullivan CE, Issa FG, Berthon-Jones M, Eves L (1981) Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet (London, England) 1(8225):862–865

    CAS  PubMed  Google Scholar 

  24. Charan J, Goyal JP, Saxena D, Yadav P (2012) Vitamin D for prevention of respiratory tract infections: a systematic review and meta-analysis. J Pharmacol Pharmacother 3(4):300

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    PubMed  Google Scholar 

  26. Bowden J, Tierney JF, Copas AJ, Burdett S (2011) Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol 11(1):1–12

    Google Scholar 

  27. Begg CB, Berlin JA (1989) Publication bias and dissemination of clinical research. JNCI Journal of the National Cancer Institute 81(2):107–15

    CAS  PubMed  Google Scholar 

  28. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jean-Louis G, Zizi F, Brown D, Ogedegbe G, Borer J, McFarlane S (2009) Obstructive sleep apnea and cardiovascular disease: evidence and underlying mechanisms. Minerva pneumologica 48(4):277

    CAS  PubMed  PubMed Central  Google Scholar 

  30. da Silva PF, Zhang L (2019) Continuous positive airway pressure for adults with obstructive sleep apnea and cardiovascular disease: a meta-analysis of randomized trials. Sleep Med 54:28–34

    Google Scholar 

  31. Alonso-Fernández A, García-Río F, Arias MA, Hernanz Á, de la Peña M, Pierola J et al (2009) Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax 64(7):581–586

    PubMed  Google Scholar 

  32. Hernández C, Abreu J, Abreu P, Colino R, Jiménez A (2006) Efectos del tratamiento con CPAP nasal en el estrés oxidativo en pacientes con síndrome de apnea del sueño. Arch Bronconeumol 42(3):125–129

    PubMed  Google Scholar 

  33. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392

    CAS  PubMed  Google Scholar 

  34. Barcelo A, Miralles C, Barbe F, Vila M, Pons S, Agusti A (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16(4):644–647

    CAS  PubMed  Google Scholar 

  35. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165(7):934–939

    PubMed  Google Scholar 

  36. Fadaei R, Koushki M, Sharafkhaneh A, Moradi N, Ahmadi R, Rostampour M et al (2020) The impact of continuous positive airway pressure therapy on circulating levels of malondialdehyde: a systematic review and meta-analysis. Sleep Med 75:27–36

    PubMed  Google Scholar 

  37. Svatikova A, Wolk R, Lerman LO, Juncos LA, Greene EL, McConnell JP et al (2005) Oxidative stress in obstructive sleep apnoea. Eur Heart J 26(22):2435–2439

    CAS  PubMed  Google Scholar 

  38. Wali S, Bahammam A, Massaeli H, Pierce G, Iliskovic N, Singal P et al (1998) Susceptibility of LDL to oxidative stress in obstructive sleep apnea. Sleep 21(3):290–296

    CAS  PubMed  Google Scholar 

  39. Alonso-Fernández A, García-Río F, Arias MA, Hernanz A, de la Peña M, Piérola J et al (2009) Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax 64(7):581–586

    PubMed  Google Scholar 

  40. Celec P, Hodosy J, Behuliak M, Pálffy R, Gardlík R, Halčák L et al (2012) Oxidative and carbonyl stress in patients with obstructive sleep apnea treated with continuous positive airway pressure. Sleep Breath 16(2):393–398

    PubMed  Google Scholar 

  41. Murri M, García-Delgado R, Alcázar-Ramírez J, Fernández-Ramos A, Alcaide J, Cardona F et al (2011) Effect of CPAP on oxidative stress and circulating progenitor cell levels in sleep patients with apnea-hypopnea syndrome. Respir Care 56(11):1830–1836

    PubMed  Google Scholar 

  42. Zhou L, Feng JT, Zhang L, Kuang Y (2017) Clinical significance of serum total oxidant/antioxidant status for the disease activity in active rheumatoid arthritis. Int J Clin Exp Pathol 10(8):8895–8900

    PubMed  PubMed Central  Google Scholar 

  43. Du XF, Zhang LL, Zhang DZ, Yang L, Fan YY, Dong SP (2018) Clinical significance of serum total oxidant/antioxidant status in patients with operable and advanced gastric cancer. Onco Targets Ther 11:6767–6775

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta S, Finelli R, Agarwal A, Henkel R (2021) Total antioxidant capacity—relevance, methods and clinical implications. Andrologia 53(2):e13624

    CAS  PubMed  Google Scholar 

  45. Mozaffari H, Daneshzad E, Surkan PJ, Azadbakht L (2018) Dietary total antioxidant capacity and cardiovascular disease risk factors: a systematic review of observational studies. J Am Coll Nutr 37(6):533–545

    CAS  PubMed  Google Scholar 

  46. Sankhla M, Sharma TK, Mathur K, Rathor JS, Butolia V, Gadhok AK et al (2012) Relationship of oxidative stress with obesity and its role in obesity induced metabolic syndrome. Clin Lab 58(5–6):385–392

    CAS  PubMed  Google Scholar 

  47. Fadaei R, Koushki M, Sharafkhaneh A, Moradi N, Ahmadi R, Rostampour M et al (2020) The impact of continuous positive airway pressure therapy on circulating levels of malondialdehyde: a systematic review and meta-analysis. Sleep Med 75:27–36

    PubMed  Google Scholar 

  48. Cofta S, Winiarska HM, Płóciniczak A, Bielawska L, Brożek A, Piorunek T et al (2019) Oxidative stress markers and severity of obstructive sleep apnea. Adv Exp Med Biol 1222:27–35

    CAS  PubMed  Google Scholar 

  49. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Fadaei or Habibolah Khazaie.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any authors. No informed consent is needed for a systematic review.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, H., Homayouni-Tabrizi, M., Amiri, H. et al. The effect of continuous positive airway pressure on total antioxidant capacity in obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath 27, 1237–1245 (2023). https://doi.org/10.1007/s11325-022-02733-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-022-02733-9

Keywords

Navigation