Log in

A Comparison of microCT and microPET for Evaluating Lymph Node Metastasis in a Rat Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The demand to optimize multidisciplinary treatment strategies in patients with benign and malignant diseases of the lung and other organs has led to the increased need of mechanistic proof-of-concept studies in preclinical small animal models using new non-invasive imaging methods. Therefore, we evaluated the role of microPET and microCT for mediastinal lymph node staging in an orthotopic lung cancer model in rats.

Procedures

Human lung cancer cells (NCI-H460) were injected transthoracically in nude rats (NIH-RNU). After 2 weeks of tumour growth, animals underwent multiphase contrast-enhanced microCT using ExiTron nano 12000 as a contrast agent and dynamic microPET using the tracer 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Thereafter, animals were sacrificed for histological analysis.

Results

Late phase micro X-ray computed tomography (microCT) revealed the best delineation of lymph node metastases, as compared to earlier scans. In terms of an increased [18F]FDG uptake over time, dynamic micro positron emission tomography (microPET) delineated lymph node metastases and enabled metabolic examinations of the induced lung cancer metastases.

Conclusion

The combination of contrast-enhanced microCT and dynamic microPET is feasible in rats for the visualization of mediastinal lymph node metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rivera MP (2013) Lung cancer in women: differences in epidemiology, biology, histology, and treatment outcomes. Crit Care Med 34:792–801

    Google Scholar 

  2. Abramyuk A, Appold S, Zophel K et al (2012) Quantitative modifications of TNM staging, clinical staging and therapeutic intent by FDG-PET/CT in patients with non small cell lung cancer scheduled for radiotherapy-a retrospective study. Lung Canc 78:148–152

    Article  Google Scholar 

  3. Kratochwil C, Haberkorn U, Giesel FL (2010) PET/CT for diagnostics and therapy stratification of lung cancer. Radiologe 50:684–691

    Article  CAS  PubMed  Google Scholar 

  4. Rami-Porta R, Call S (2012) Invasive staging of mediastinal lymph nodes: mediastinoscopy and remediastinoscopy. Thorac Surg Clin 22:177–189

    Article  PubMed  Google Scholar 

  5. Saha D, Watkins L, Yin Y et al (2010) An orthotopic lung tumor model for image-guided microirradiation in rats. Radiat Res 174:62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Blackhall F, Seiden-Long I et al (2004) Modeling of lung cancer by an orthotopically growing H460SM variant cell line reveals novel candidate genes for systemic metastasis. Oncogene 23:6316–6324

    Article  CAS  PubMed  Google Scholar 

  7. Boll H, Figueiredo G, Fiebig T et al (2013) Comparison of Fenestra LC, ExiTron nano 6000, and ExiTron nano 12000 for micro-CT imaging of liver and spleen in mice. Acad Radiol 20:1137–1143

    Article  PubMed  Google Scholar 

  8. Boll H, Bag S, Schambach SJ et al (2010) High-speed single-breath-hold micro-computed tomography of thoracic and abdominal structures in mice using a simplified method for intubation. J Comput Assist Tomogr 34:783–790

    Article  PubMed  Google Scholar 

  9. Haberkorn U, Hoffend J, Schmidt K et al (2007) Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma. Eur J Nucl Med Mol Imaging 34:2011–2023

    Article  CAS  PubMed  Google Scholar 

  10. Cheng C, Alt V, Pan L et al (2014) Application of F-18-sodium fluoride (NaF) dynamic PET-CT (dPET-CT) for defect healing: a comparison of biomaterials in an experimental osteoporotic rat model. Sci Monit 20:1942–1949

    Article  Google Scholar 

  11. Dimitrakopoulou-Strauss A, Strauss LG, Rudi J (2003) PET-FDG as predictor of therapy response in patients with colorectal carcinoma. Q J Nucl Med 47:8–13

    CAS  PubMed  Google Scholar 

  12. Dimitrakopoulou-Strauss A, Hoffmann M, Bergner R et al (2007) Prediction of short-term survival in patients with advanced nonsmall cell lung cancer following chemotherapy based on 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography: a feasibility study. Mol Imaging Biol 9:308–317

    Article  PubMed  Google Scholar 

  13. Haberkorn U, Strauss LG, Dimitrakopoulou A et al (1993) Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy. J Nucl Med 34:12–17

    CAS  PubMed  Google Scholar 

  14. Reischauer C, Froehlich JM, Pless M et al (2014) Early treatment response in non-small cell lung cancer patients using diffusion-weighted imaging and functional diffusion maps—a feasibility study. PLoS One 9:e108052

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hicks RJ (2009) Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med 50(Suppl 1):31S–42S

    Article  CAS  PubMed  Google Scholar 

  16. Takenaka D, Ohno Y, Koyama H et al (2010) Integrated FDG-PET/CT vs. standard radiological examinations: comparison of capability for assessment of postoperative recurrence in non-small cell lung cancer patients. Eur J Radiol 74:458–464

    Article  PubMed  Google Scholar 

  17. Gorenberg M, Bar-Shalom R, Israel O (2008) Patterns of FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Br J Radiol 81:821–825

    Article  CAS  PubMed  Google Scholar 

  18. Weber WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657

    Article  CAS  PubMed  Google Scholar 

  19. Erasmus JJ, Patz EF Jr, McAdams HP et al (1997) Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 168:1357–1360

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto Y, Kameyama R, Murota M et al (2009) Early assessment of therapeutic response using FDG PET in small cell lung cancer. Mol Imaging Biol 11:467–472

    Article  CAS  PubMed  Google Scholar 

  21. Lee DH, Kim SK, Lee HY et al (2009) Early prediction of response to first-line therapy using integrated 18F-FDG PET/CT for patients with advanced/metastatic non-small cell lung cancer. J Thorac Oncol 4:816–821

    Article  PubMed  Google Scholar 

  22. Nahmias C, Hanna WT, Wahl LM et al (2007) Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 48:744–751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Bundesministerium für Bildung und Forschung (82DZL00401; 82DZL00402). We thank Dr. Andreas Briel for supporting the analysis of the contrast-enhanced microCT data and Alexandra Tietz and Karin Leotta for technical assistance with the establishing of the tumour model and the small-animal imaging procedures.

Conflict of Interest

There is no potential conflict of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik L. Giesel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flechsig, P., Kratochwil, C., Warth, A. et al. A Comparison of microCT and microPET for Evaluating Lymph Node Metastasis in a Rat Model. Mol Imaging Biol 18, 243–248 (2016). https://doi.org/10.1007/s11307-015-0890-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0890-0

Key words

Navigation