Log in

Metabolomic profiles in relapsing–remitting and progressive multiple sclerosis compared to healthy controls: a five-year follow-up study

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction and objectives

Multiple sclerosis (MS) is a disease of the central nervous system associated with immune dysfunction, demyelination, and neurodegeneration. The disease has heterogeneous clinical phenotypes such as relapsing–remitting MS (RRMS) and progressive multiple sclerosis (PMS), each with unique pathogenesis. Metabolomics research has shown promise in understanding the etiologies of MS disease. However, there is a paucity of clinical studies with follow-up metabolomics analyses. This 5-year follow-up (5YFU) cohort study aimed to investigate the metabolomics alterations over time between different courses of MS patients and healthy controls and provide insights into metabolic and physiological mechanisms of MS disease progression.

Methods

A cohort containing 108 MS patients (37 PMS and 71 RRMS) and 42 controls were followed up for a median of 5 years. Liquid chromatography–mass spectrometry (LC–MS) was applied for untargeted metabolomics profiling of serum samples of the cohort at both baseline and 5YFU. Univariate analyses with mixed-effect ANCOVA models, clustering, and pathway enrichment analyses were performed to identify patterns of metabolites and pathway changes across the time effects and patient groups.

Results and conclusions

Out of 592 identified metabolites, the PMS group exhibited the most changes, with 219 (37%) metabolites changed over time and 132 (22%) changed within the RRMS group (Bonferroni adjusted P < 0.05). Compared to the baseline, there were more significant metabolite differences detected between PMS and RRMS classes at 5YFU. Pathway enrichment analysis detected seven pathways perturbed significantly during 5YFU in MS groups compared to controls. PMS showed more pathway changes compared to the RRMS group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The statistical findings of this research are available on request to the study principal investigator (RZ) and statistician (RHB) upon approval by the appropriate Institutional Review Board of both parties.

References

  • Aasly, J., Gårseth, M., Sonnewald, U., Zwart, J. A., White, L., & Unsgård, G. (1997). Cerebrospinal fluid lactate and glutamine are reduced in multiple sclerosis. Acta Neurologica Scandinavica, 95(1), 9–12. https://doi.org/10.1111/j.1600-0404.1997.tb00060.x?sid=nlm/3Apubmed

    Article  CAS  PubMed  Google Scholar 

  • Bates, D., Sarkar, D., Bates, M. D., & Matrix, L. (2007). The lme4 package. R Package Version, 2(1), 74.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (methodological), 57(1), 289–300.

    Google Scholar 

  • Cicalini, I., Rossi, C., Pieragostino, D., Agnifili, L., Mastropasqua, L., di Ioia, M., De Luca, G., Onofrj, M., Federici, L., & Del Boccio, P. (2019). Integrated lipidomics and metabolomics analysis of tears in multiple sclerosis: An insight into diagnostic potential of lacrimal fluid. International Journal of Molecular Sciences, 20(6), 1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Confavreux, C., & Vukusic, S. (2006). Natural history of multiple sclerosis: A unifying concept. Brain, 129(3), 606–616.

    Article  PubMed  Google Scholar 

  • Correale, J. (2020). Immunosuppressive amino-acid catabolizing enzymes in multiple sclerosis. Frontiers in Immunology, 11, 600428. https://doi.org/10.3389/fimmu.2020.600428

    Article  CAS  PubMed  Google Scholar 

  • Davis, I., & Liu, A. (2015). What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Review of Neurotherapeutics, 15(7), 719–721. https://doi.org/10.1586/14737175.2015.1049999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Boccio, P., Rossi, C., di Ioia, M., Cicalini, I., Sacchetta, P., & Pieragostino, D. (2016). Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. PROTEOMICS—Clinical Applications, 10(4), 470–484.

    Article  PubMed  Google Scholar 

  • Dickens, A. M., Larkin, J. R., Griffin, J. L., Cavey, A., Matthews, L., Turner, M. R., Wilcock, G. K., Davis, B. G., Claridge, T. D., & Palace, J. (2014). A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology, 83(17), 1492–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doneanu, C. E., Chen, W., & Mazzeo, J. R. (2011). UPLC-MS monitoring of water-soluble vitamin Bs in cell culture media in minutes. Water Application Note, 2011, 1–7.

    Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Functional genomics (pp. 155–171). Springer.

    Chapter  Google Scholar 

  • Hauser, S. L., & Cree, B. A. (2020). Treatment of multiple sclerosis: A review. The American Journal of Medicine, 133(12), 1380-1390 e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman, S., Khoonsari, P. E., Tolf, A., Steinmetz, J., Zetterberg, H., Åkerfeldt, T., Jakobsson, P.-J., Larsson, A., Spjuth, O., & Burman, J. (2018). Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics, 8(16), 4477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, W., Sun, L., Gong, Y., Zhou, Y., Yang, P., Ye, Z., Fu, J., Huang, A., Fu, Z., Yu, W., Zhao, Y., Yang, T., & Zhou, H. (2016). Relationship between branched-chain amino acids, metabolic syndrome, and cardiovascular risk profile in a Chinese population: A cross-sectional study. International Journal of Endocrinology, 2016, 8173905. https://doi.org/10.1155/2016/8173905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hum, S., Lapierre, Y., Scott, S. C., Duquette, P., & Mayo, N. E. (2017). Trajectory of MS disease course for men and women over three eras. Multiple Sclerosis Journal, 23(4), 534–545.

    Article  PubMed  Google Scholar 

  • Jakimovski, D., Guan, Y., Ramanathan, M., Weinstock-Guttman, B., & Zivadinov, R. (2019). Lifestyle-based modifiable risk factors in multiple sclerosis: Review of experimental and clinical findings. Neurodegenerative Disease Management, 9(3), 149–172. https://doi.org/10.2217/nmt-2018-0046

    Article  PubMed  Google Scholar 

  • Jia, Y., Wu, T., Jelinek, C. A., Bielekova, B., Chang, L., Newsome, S., Gnanapavan, S., Giovannoni, G., Chen, D., & Calabresi, P. A. (2012). Development of protein biomarkers in cerebrospinal fluid for secondary progressive multiple sclerosis using selected reaction monitoring mass spectrometry (SRM-MS). Clinical Proteomics, 9(1), 1–9.

    Article  Google Scholar 

  • Kampman, M. T., Wilsgaard, T., & Mellgren, S. I. (2007). Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. Journal of Neurology, 254(4), 471–477. https://doi.org/10.1007/s00415-006-0395-5

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, J., Zackowski, K., Kim, S., Chidobem, I., Smith, M., Farhadi, F., & Bhargava, P. (2021). Exercise leads to metabolic changes associated with improved strength and fatigue in people with MS. Annals of Clinical and Translational Neurology, 8, 1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2018). Emmeans: Estimated marginal means, aka least-squares means. R Package Version, 1(1), 3.

    Google Scholar 

  • Ligouri, M., Marrosu, M., Pugliatti, M., Giuliani, F., De Robertis, F., Cocco, E., Zimatore, G., Livrea, P., & Trojano, M. (2000). Age at onset in multiple sclerosis. Neurological Sciences, 21(2), S825–S829.

    Article  Google Scholar 

  • Lim, C. K., Bilgin, A., Lovejoy, D. B., Tan, V., Bustamante, S., Taylor, B. V., Bessede, A., Brew, B. J., & Guillemin, G. J. (2017). Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Scientific Reports, 7(1), 1–9.

    Google Scholar 

  • Lorefice, L., Murgia, F., Fenu, G., Frau, J., Coghe, G., Murru, M. R., Tranquilli, S., Visconti, A., Marrosu, M. G., & Atzori, L. (2019). Assessing the metabolomic profile of multiple sclerosis patients treated with interferon beta 1a by 1 H-NMR spectroscopy. Neurotherapeutics, 16(3), 797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., & Barkhof, F. (2014). Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology, 83(3), 278–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchinetti, C. F., Brück, W., Rodriguez, M., & Lassmann, H. (1996). Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathology, 6(3), 259–274.

    Article  CAS  PubMed  Google Scholar 

  • Lutz, N. W., Viola, A., Malikova, I., Confort-Gouny, S., Audoin, B., Ranjeva, J.-P., Pelletier, J., & Cozzone, P. J. (2007). Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS ONE, 2(7), e595.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGarrah, R. W., & White, P. J. (2022). Branched-chain amino acids in cardiovascular disease. Nature Reviews Cardiology, 20, 77–89. https://doi.org/10.1038/s41569-022-00760-3

    Article  CAS  PubMed  Google Scholar 

  • McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and treatment of multiple sclerosis: A review. JAMA, 325(8), 765–779.

    Article  CAS  PubMed  Google Scholar 

  • Mo, M. L., Jamshidi, N., & Palsson, B. Ø. (2007). A genome-scale, constraint-based approach to systems biology of human metabolism. Molecular Biosystems, 3(9), 598–603.

    Article  CAS  PubMed  Google Scholar 

  • Monaco, F., Fumero, S., Mondino, A., & Mutani, R. (1979). Plasma and cerebrospinal fluid tryptophan in multiple sclerosis and degenerative diseases. Journal of Neurology, Neurosurgery & Psychiatry, 42(7), 640–641.

    Article  CAS  Google Scholar 

  • Montalban, X., Hauser, S. L., Kappos, L., Arnold, D. L., Bar-Or, A., Comi, G., De Seze, J., Giovannoni, G., Hartung, H.-P., & Hemmer, B. (2017). Ocrelizumab versus placebo in primary progressive multiple sclerosis. New England Journal of Medicine, 376(3), 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Murgia, F., Lorefice, L., Poddighe, S., Fenu, G., Secci, M. A., Marrosu, M. G., Cocco, E., & Atzori, L. (2020). Multi-platform characterization of cerebrospinal fluid and serum metabolome of patients affected by relapsing-remitting and primary progressive multiple sclerosis. Journal of Clinical Medicine, 9(3), 863. https://doi.org/10.3390/jcm9030863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. -É., Li, S., & **a, J. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49, W388–W396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regenold, W. T., Phatak, P., Makley, M. J., Stone, R. D., & Kling, M. A. (2008). Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. Journal of the Neurological Sciences, 275(1–2), 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimand, J., Isserlin, R., Voisin, V., Kucera, M., Tannus-Lopes, C., Rostamianfar, A., Wadi, L., Meyer, M., Wong, J., & Xu, C. (2019). Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA Cytoscape and EnrichmentMap. Nature Protocols, 14(2), 482–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokach, L., & Maimon, O. (2005). Clustering methods. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (pp. 321–352). New York: Springer.

    Chapter  Google Scholar 

  • Schwarcz, R. (2016). Kynurenines and glutamate: Multiple links and therapeutic implications. Advances in Pharmacology, 76, 13–37. https://doi.org/10.1016/bs.apha.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz, R., Bruno, J. P., Muchowski, P. J., & Wu, H. Q. (2012). Kynurenines in the mammalian brain: When physiology meets pathology. Nature Reviews Neuroscience, 13(7), 465–477. https://doi.org/10.1038/nrn3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake, V. K., **, W., Mochizuki, A., Chitou, B., & Goodenowe, D. B. (2015). Metabolic dysfunctions in multiple sclerosis: Implications as to causation, early detection, and treatment, a case control study. BMC Neurology, 15(1), 1–10.

    Article  Google Scholar 

  • Smith, K. J., & Lassmann, H. (2002). The role of nitric oxide in multiple sclerosis. The Lancet Neurology, 1(4), 232–241. https://doi.org/10.1016/s1474-4422(02)00102-3

    Article  CAS  PubMed  Google Scholar 

  • Smolinska, A., Blanchet, L., Coulier, L., Ampt, K. A., Luider, T., Hintzen, R. Q., Wijmenga, S. S., & Buydens, L. M. (2012). Interpretation and visualization of non-linear data fusion in kernel space: Study on metabolomic characterization of progression of multiple sclerosis. PLoS ONE, 7(6), e38163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sospedra, M., & Martin, R. (2005). Immunology of multiple sclerosis. Annual Review of Immunology, 23, 683–747.

    Article  CAS  PubMed  Google Scholar 

  • Stoessel, D., Stellmann, J.-P., Willing, A., Behrens, B., Rosenkranz, S. C., Hodecker, S. C., Stürner, K. H., Reinhardt, S., Fleischer, S., & Deuschle, C. (2018). Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Frontiers in Human Neuroscience, 12, 226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swank, R. L. (1950). Multiple sclerosis; a correlation of its incidence with dietary fat. The American Journal of the Medical Sciences, 220(4), 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Torkildsen, O., Wergeland, S., Bakke, S., Beiske, A. G., Bjerve, K. S., Hovdal, H., Midgard, R., Lilleas, F., Pedersen, T., Bjornara, B., Dalene, F., Kleveland, G., Schepel, J., Olsen, I. C., & Myhr, K. M. (2012). omega-3 fatty acid treatment in multiple sclerosis (OFAMS Study): A randomized, double-blind, placebo-controlled trial. Archives of Neurology, 69(8), 1044–1051. https://doi.org/10.1001/archneurol.2012.283

    Article  PubMed  Google Scholar 

  • Tremlett, H., Zhao, Y., Rieckmann, P., & Hutchinson, M. (2010). New perspectives in the natural history of multiple sclerosis. Neurology, 74(24), 2004–2015.

    Article  PubMed  Google Scholar 

  • Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., & Karu, N. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617.

    Article  CAS  PubMed  Google Scholar 

  • Zahoor, I., Rui, B., Khan, J., Datta, I., & Giri, S. (2021). An emerging potential of metabolomics in multiple sclerosis: A comprehensive overview. Cellular and Molecular Life Sciences, 78, 3181–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MR, RB and RHB received funding from Department of Defense Congressionally Directed Medical Research Programs (MS190096), USAMRDC, Multiple Sclerosis Research Program is gratefully acknowledged. The funder had no role in the design of the study or the data analysis.

Author information

Authors and Affiliations

Authors

Contributions

TS, RB, MR, RHB - prepared the manuscript; TS, RHB - prepared Figures and Tables; All authors reviewed the manuscript.

Corresponding author

Correspondence to Rachael H. Blair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 kb)

Supplementary file2 (XLSX 309 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Browne, R.W., Tamaño-Blanco, M. et al. Metabolomic profiles in relapsing–remitting and progressive multiple sclerosis compared to healthy controls: a five-year follow-up study. Metabolomics 19, 44 (2023). https://doi.org/10.1007/s11306-023-02010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-02010-0

Keywords

Navigation