Log in

Energy and Latency Efficient Caching in Mobile Edge Networks: Survey, Solutions, and Challenges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Future wireless networks provide research challenges with many fold increase of smart devices and the exponential growth in mobile data traffic. The advent of highly computational and real-time applications cause huge expansion in traffic volume. The emerging need to bring data closer to users and minimizing the traffic off the macrocell base station introduces the use of caches at the edge of the networks. Storing most popular files at the edge of mobile edge networks (MENs) in user terminals (UTs) and small base stations caches is a promising approach to the challenges that face data-rich wireless networks. Caching at the mobile UT allows to obtain requested contents directly from its nearby UTs caches through the device-to-device (D2D) communication. In this survey article, solutions for mobile edge computing and caching challenges in terms of energy and latency are presented. Caching in MENs and comparisons between different caching techniques in MENs are presented. An illustration of the research in cache development for wireless networks that apply intelligent and learning techniques in a specific domain in their design is presented. We summarize the challenges that face the design of caching system in MENs. Finally, some future research directions are discussed for the development of cache placement and cache access and delivery in MENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable as no code is used in this survey article.

References

  1. Baştug, E., Bennis, M., & Debbah, M. (2016). Proactive caching in 5G small cell networks. Towards 5G: Applications, requirements and candidate technologies 78–98.

  2. Poularakis, K., Iosifidis, G., Sourlas, V., & Tassiulas, L. (2016). Exploiting caching and multicast for 5G wireless networks. IEEE Transactions on Wireless Communications, 15(4), 2995–3007.

    Google Scholar 

  3. Bastug, E., Bennis, M., & Debbah, M. (2014). Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Communications Magazine, 52(8), 82–89.

    Google Scholar 

  4. Bastug, E., Bennis, M., & Debbah, M. (2014). Social ands patial proactive caching for mobile data offloading. In 2014 IEEE international conference on communications workshops, ICC, vol. 2014 (pp. 581–586).

  5. KiskaniM, K., & Sadjadpour, H. R. (2017). Multihop caching-aided coded multicasting for the next generation of cellular networks. IEEE Transactions on Vehicular Technology, 66(3), 2576–2585.

    Google Scholar 

  6. Goian, H. S., Al-Jarrah, O. Y., Muhaidat, S., Al-Hammadi, Y., Yoo, P., & Dianati, M. (2019). Popularity-based video caching techniques for cache-enabled networks: a survey. IEEE Access, 7, 27699–27719.

    Google Scholar 

  7. Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732.

    Google Scholar 

  8. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. A. (2018). Survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, 20, 3098–3130.

    Google Scholar 

  9. Piao, Z., Peng, M., Liu, Y., & Daneshm, M. (2018). Recent advances of edge cache in radio access networks for internet of things: Techniques, performances, and challenges. IEEE Internet of Things Journal, 6(1), 1010–1028.

    Google Scholar 

  10. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.

    Google Scholar 

  11. Zhang, M., Luo, H., & Zhang, H. (2015). A survey of caching mechanisms in information-centric networking. IEEE Communications Surveys & Tutorials, 17(3), 1473–1499.

    Google Scholar 

  12. Mehrabi, M., You, D., Latzko, V., Salah, H., Reisslein, M., & Fitzek, F. H. (2019). Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A Survey. IEEE Access, 7, 166079–166108.

    Google Scholar 

  13. Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.

    Google Scholar 

  14. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465.

    Google Scholar 

  15. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile edge computingaâĂŤA key technology towards 5G. ETSI White Paper, 11(11), 1–16.

    Google Scholar 

  16. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.

    Google Scholar 

  17. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

    Google Scholar 

  18. Pang, Z., Sun, L., Wang, Z., Tian, E., & Yang, S. (2015). A survey of cloudlet based mobile computing. In: International Conference on Cloud Computing and Big Data (CCBD) IEEE, (pp. 268–275).

  19. Liu, Y., Point, J. C., Katsaros, K. V., Glykantzis, V., Siddiqui, M. S., & Escalona, E. (2017). SDN/NFV based caching solution for future mobile network (5G). (pp. 1–5), IEEE.

  20. Chen, Q., Yu, F. R., Huang, T., **e, R., Liu, J., & Liu, Y. (2018). Joint resource allocation for software-defined networking, caching, and computing. IEEE/ACM Transactions on Networking, 26(1), 274–287.

    Google Scholar 

  21. Huo, R., Yu, F. R., Huang, T., et al. (2016). Software defined networking, caching, and computing for green wireless networks. IEEE Communications Magazine, 54(11), 185–193.

    Google Scholar 

  22. Zhang, X., & Zhu, Q. (2017). Distributed mobile devices caching over edge computing wireless networks (pp. 127–132), IEEE.

  23. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., & Flinck, H. (2017). Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, 55(3), 38–43.

    Google Scholar 

  24. Ko, H., Lee, J., & Pack, S. (2018). Spatial and temporal computation offloading decision algorithm in edge cloud-enabled heterogeneous networks. IEEE Access, 6, 18920–18932.

    Google Scholar 

  25. Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.

    Google Scholar 

  26. Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoniem, A. (2018). Energy efficient task caching and offloading for mobile edge Computing. IEEE Access, 6, 11365–11373.

    Google Scholar 

  27. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358.

    Google Scholar 

  28. Cui, Y., & Jiang, D. (2017). Analysis and optimization of caching and multi casting in large-scale cache-enabled heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 16(1), 250–264.

    MathSciNet  Google Scholar 

  29. Ding, W., Qi, W., Wang, J., & Chen, B. (2015). OpenSCaaS: An open service chain as a service platform toward the integration of SDN and NFV. IEEE Network, 29(3), 30–35.

    Google Scholar 

  30. Hung, C. H., Hsieh, Y. C., Wang, L. C. (2017). Control plane latency reduction for service chaining in mobile edge computing system (pp. 1–5). IEEE.

  31. Chen, M., Qian, Y., Hao, Y., Li, Y., & Song, J. (2018). Data-driven computing and caching in 5G networks: Architecture and delay analysis. IEEE Wireless Communications, 25(1), 70–75.

    Google Scholar 

  32. Ranadheera, S., Maghsudi, S., & Hossain, E. (2018). Computation offloading and activation of mobile edge computing servers: A minority game. IEEE Wireless Communications Letters, 7, 688–691.

    Google Scholar 

  33. Yu, S., Wang, X., & Langar, R. (2017). Computation off loading for mobile edge computing: A deep learning approach (pp. 1–6). IEEE.

  34. Guo, H., Liu, J., Qin, H., & Zhang, H. (2017). Collaborative computation offloading for mobile-edge computing over fiber-wireless networks (pp. 1–6). IEEE.

  35. Luo, C., Salinas, S., Li, M., & Li, P. (2017). Energy-efficient autonomic offloading in mobile edge computing, (pp. 581–588). IEEE.

  36. Deng, M., Tian, H., & Lyu, X. (2016). Adaptive sequential offloading game for multi-cell mobile edge computing (pp. 1–5). IEEE.

  37. Perabathini, B., Baştuğ, E., Kountouris, M., Debbah, M., & Conte, A. (2018). Caching at the edge: A green perspective for 5G networks (pp. 2830–2835). IEEE.

  38. Lee, M. C., & Molisch, A. F. (2017). Individual preference aware caching policy design for energy-efficient wireless D2D communi-cations (pp. 1–7). IEEE.

  39. Zhang, J., Zhang, X., Yan, Z., Li, Y., Wang, W., & Zhang, Y. (2016). Social-aware cache information processing for 5G ultra-dense networks (pp. 1–5). IEEE.

  40. Gregori, M., Gómez-Vilardebó, J., Matamoros, J., & Gündüz, D. (2016). Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications, 34(5), 1222–1234.

    Google Scholar 

  41. Cui, Y., He, W., Ni, C., Guo, C., & Liu, Z. (2017). Energy-efficient resource allocation for cache-assisted mobile edge computing. ar**v preprint ar**v:1708.04813.

  42. Liang, C., He, Y., Yu, F. R., & Zhao, N. (2017). Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching (pp. 121–126). IEEE.

  43. Mrad, S., Hamouda, S., & Rezig, H. (2017). Graph Theory based multi cast caching for better energy saving in dense small c.ell networks (pp. 2015–2020). IEEE.

  44. Zhang, J., **a, W., Yan, F., & Shen, L. (2018). Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access, 6, 19324–19337.

    Google Scholar 

  45. Wu, D., Liu, Q., Wang, H., Wu, D., & Wang, R. (2017). Socially aware energy-efficient mobile edge collaboration for video distribution. IEEE Transactions on Multimedia, 19(10), 2197–2209.

    Google Scholar 

  46. Liu, J., & Zhang, Q. (2018). Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access, 6, 12825–12837.

    Google Scholar 

  47. Liu, C. F, Bennis, M., & Poor, H. V. (2017). Latency and reliability-aware task offloading and resource allocation for mobile edge computing. ar**v preprint ar**v:1710.00590.

  48. Mao, Y., Zhang, J., & Letaief, K. B. (2016). Dynamic computation off loading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.

    Google Scholar 

  49. Xu, J., Chen, L., & Ren, S. (2017). Online learning for offloading and auto scaling in energy harvesting mobile edge computing. IEEE Transactions on Cognitive Communications and Networking, 3(3), 361–373.

    Google Scholar 

  50. Hou, T., Feng, G., Qin, S., & Jiang, W. (2017). Proactive content caching by exploiting transfer learning for mobile edge computing (pp. 1–6). IEEE.

  51. Poderys, J., Artuso, M., Lensbøl, C. M. O., Christiansen, H. L., & Soler, J. (2018). Caching at the mobile edge: A practical implementation. IEEE Access, 6, 8630–8637.

    Google Scholar 

  52. Xu, J., Palanisamy, B., Ludwig, H., & Wang, Q. (2017). Zenith: Utility-aware resource allocation for edge computing (pp. 47–54). IEEE.

  53. Zhu, Z., Peng, J., Gu, X., et al. (2018). Fair resource allocation for system throughput maximization in mobile edge computing. IEEE Access, 6, 5332–5340.

    Google Scholar 

  54. Kiskani, M. K., Vakilinia, S., & Cheriet, M. (2017) Popularity based file categorization and coded caching in 5G networks (pp. 1–5). IEEE.

  55. Müller, S., Atan, O., Schaar, vdM., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036.

    Google Scholar 

  56. Leconte, M., Paschos, G., Gkatzikis, L., Draief, M., Vassilaras, S., & Chouvardas, S. (2016). Placing dynamic content in caches with small population (pp. 1–9). IEEE.

  57. Maijller, S., Atan, O., Schaar, v. d. M, & Klein, A. (2016). Smart caching in wireless small cell networks via contextual multi-armed bandits (pp. 1–7). IEEE.

  58. Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femto caching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.

    MathSciNet  MATH  Google Scholar 

  59. Vo, N. S., Duong, T. Q., & Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femtocaching framework (pp. 1–6). IEEE.

  60. Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.

    Google Scholar 

  61. Vo, N. S., Duong, T. Q., Guizani, M. (2016). QoE-oriented resource efficiency for 5G two-tier cellular networks: A femto caching framework (pp. 1–6). IEEE.

  62. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE.

  63. Müller, S., Atan, O., Schaar, v. d. M., & Klein, A. (2016). Smart caching in wireless small cell networks via context UAL multi-armedbandits (pp. 1–7). IEEE.

  64. Sengupta, A., Amuru, S., Tandon, R., Buehrer, R. M., & Clancy, T. C. (2014). Learning distributed caching strategies in small cell networks (pp. 917–921). IEEE.

  65. Maijller, S., Atan, O., Schaar, V. D. M., & Klein, A. (2017). Context-aware proactive content caching with service differentiation in wireless networks. IEEE Transactions on Wireless Communications, 16(2), 1024–1036.

    Google Scholar 

  66. Li, S., Xu, J., Van Der Schaar, M., Li, W. (2016). Popularity-driven content caching (pp. 1–9). IEEE.

  67. Pantisano, F., Bennis, M., Saad, W., & ,Debbah, M. (2014). Cache-aware user association in backhaul-constrained small cell networks (pp. 37–42). IEEE.

  68. Bastug, E., Bennis, M., & Debbah, M. (2014). Social and spatial proactive caching for mobile data offloading (pp. 581–586). IEEE.

  69. Rao, J., Feng, H., Yang, C., Chen, Z., & **a, B. (2016). Optimal caching placement for D2D assisted wireless caching networks (pp. 1–6). IEEE.

  70. Zhang, X., Wang, Y., Sun, R., & Wang, D. (2016).. Clustered device-to-device caching based on file preferences (pp. 1–6). IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)

  71. Khreishah, A., Chakareski, J., & Gharaibeh, A. (2016). Joint caching, routing, and channel assignment for collaborative small-cell cellular networks. IEEE Journal on Selected Areas in Communications, 34(8), 2275–2284.

    Google Scholar 

  72. Wang, Y., Chen, Y., Dai, H., Huang, Y., Yang, L. A. (2017). Learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE.

  73. Zheng, Z., Song, L., Han, Z., Li, G. Y., & Poor, H. V. (2018). A Stackelberg game approach to proactive caching in large-scale mobile edge networks. IEEE Transactions on Wireless Communications, 17, 5198–5211.

    Google Scholar 

  74. Doan, K. N., Van Nguyen, T., Quek, T. Q., & Shin, H. (2018). Content-aware proactive caching for backhaul offloading in cellular network. IEEE Transactions on Wireless Communications, 17(5), 3128–3140.

    Google Scholar 

  75. Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. IEEE/ACM Transactions on Networking (TON), 22(5), 1444–1462.

    Google Scholar 

  76. Tanzil, S. S., Hoiles, W., & Krishnamurthy, V. (2017). Adaptive scheme for caching youtube content in a cellular network: Machine learning approach. IEEE Access, 5, 5870–5881.

    Google Scholar 

  77. Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications, 16(12), 8347–8361.

    Google Scholar 

  78. Tan, Y., Yuan, Y., Yang, T., Xu, Y., & Hu, B. (2016). Femtocaching in wireless video networks: Distributed framework based on exact potential game (pp. 1–6). IEEE.

  79. Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.

    MathSciNet  MATH  Google Scholar 

  80. Wang, R., Peng, X., Zhang, J., & Letaief, K. B. (2016). Mobility-aware caching for content-centric wireless networks: Modeling and methodology. IEEE Communications Magazine, 54(8), 77–83.

    Google Scholar 

  81. Yang, L., Liu, T., Hu, Q., Liu, S., & Huang, H. (2017). Empirical analysis on temporal statistics of pairwise contact patterns in dynamic human networks (pp. 9–16). IEEE.

  82. Wang, T., Song, L., & Han, Z. (2015). Dynamic femtocaching for mobile users (pp. 861–865). IEEE.

  83. Poularakis, K., & Tassiulas, L. (2017). Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Transactions on Mobile Computing, 16(3), 675–687.

    Google Scholar 

  84. Guan, Y., **ao, Y., Feng, H., Shen, C. C., Cimini, L. J. (2014). MobiCacher: Mobility-aware content caching in small-cell networks (pp. 4537–4542). IEEE.

  85. Liu, X., Zhang, J., Zhang, X., & Wang, W. (2017). Mobility-aware coded probabilistic caching scheme for MEC-enabled small cell networks. IEEE Access, 5, 17824–17833.

    Google Scholar 

  86. Lan, R., Wang, W., Huang, A., & Shan, H. (2015). Device-to-device offloading with proactive caching in mobile cellular networks (pp. 1–6). IEEE.

  87. Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2017). Mobility-aware caching in D2D networks. IEEE Transactions on Wireless Communications, 16(8), 5001–5015.

    Google Scholar 

  88. Zhang, K., Leng, S., He, Y., Maharjan, S., & Zhang, Y. (2018). Cooperative content caching in 5G networks with mobile edge computing. IEEE Wireless Communications, 25(3), 80–87.

    Google Scholar 

  89. Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2018). Exploiting mobility in cache-assisted D2D networks: Performance analysis and optimization. ar**v preprint ar**v:1806.04069.

  90. Deng, T., Ahani, G., Fan, P., & Yuan, D. (2018). Cost-optimal caching for D2D networks with user mobility: Modeling, analysis, and computational approaches. IEEE Transactions on Wireless Communications, 17(5), 3082–3094.

    Google Scholar 

  91. Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., & Humar, I. (2016). Mobility-aware caching and computation offloading in 5G ultra-dense cellular networks. Sensors, 16(7), 974.

    Google Scholar 

  92. Wang, Y., Chen, Y., Dai, H., Huang, Y., & Yang, L. (2017). A learning-based approach for proactive caching in wireless communication networks (pp. 1–6). IEEE.

  93. Nguyen, Q. N., Arifuzzaman, M., Yu, K., & Sato, T. (2018). A context-aware green information-centric networking model for future wireless communications. IEEE Access, 6, 22804–22816.

    Google Scholar 

  94. Abou-Zeid, H., & Hassanein, H. (2014). Toward green media delivery: Location-aware opportunities and approaches. IEEE Wireless Communications, 21(4), 38–46.

    Google Scholar 

  95. Huang, X., & Ansari, N. (2017). Content caching and distribution in smart grid enabled wireless networks. IEEE Internet of Things Journal, 4(2), 513–520.

    Google Scholar 

  96. Peng, X., Shi, Y., Zhang, J., & Letaief, K. B. (2017). Layered group sparse beamforming for cache-enabled green wireless networks. IEEE Transactions on Communications, 65(12), 5589–5603.

    Google Scholar 

  97. Duan, P., Jia, Y., Liang, L., Rodriguez, J., Huq, K. M. S., & Li, G. (2018). Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Transactions on Industrial Informatics, 14(6), 2715.

    Google Scholar 

  98. Gabry, F., Bioglio, V., & Land, I. (2016). On energy-efficient edge caching in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 34(12), 3288–3298.

    Google Scholar 

  99. Guo, F., Zhang, H., Li, X., Ji, H., & Leung, V. C. (2018). Joint optimization of caching and association in energy harvesting powered small cell networks. IEEE Transactions on Vehicular Technology, 67, 6469–6480.

    Google Scholar 

  100. Zhang, X., Lv, T., Ni, W., Cioffi, J. M., Beaulieu, N. C., & Guo, Y. J. (2018). Energy-efficient caching for scalable videos in heterogeneous networks. IEEE Journal on Selected Areas in Communications, 36, 1802–1815.

    Google Scholar 

  101. Yu, F. R., Huang, T., & Liu, Y. (2018). Integrated networking, caching, and computing. CRC Press. 2018.

  102. Intel. (2015). Intel 5G: A network transformation imperative. Teresa Mastrangelo, Intel White Paper, 2015. https://gsacom.com/paper/2582/

  103. Parvez I, Rahmati, A., Güvenç, I., Sarwat, A. I., & Dai, H. (2017). A survey on low latency towards 5G: RAN, core network and caching solutions. CoRR.

  104. Suppliers Association mG. (2015). The road to 5G: Drivers, applications, requirements and technical development. Global Mobile suppliers Association

  105. Qi, Y., Hunukumbure, M., Nekovee, M., Lorca, J., & Sgardoni, V. (2016). Quantifying data rate and bandwidth requirements for immersive 5G experience (pp. 455–461). IEEE.

  106. Popovski, P. (2014). Ultra-reliable communication in 5G wireless systems (pp. 146–151). IEEE.

  107. Sengupta, A., Tandon, R., & Simeone, O. (2017). Fog-aided wireless networks for content delivery: Fundamental latency trade-offs. IEEE Transactions on Information Theory, 63, 6650–6678.

    MathSciNet  MATH  Google Scholar 

  108. Kwak, J., Kim, Y., Le, L. B., & Chong, S. (2018). Hybrid content caching in 5G wireless networks: Cloud versus edge caching. IEEE Transactions on Wireless Communications, 17(5), 3030–3045.

    Google Scholar 

  109. Wang, Y., Tao, X., Zhang, X., & Mao, G. (2016). Joint caching placement and user association for minimizing user download delay. IEEE Access, 4, 8625–8633.

    Google Scholar 

  110. Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 1, 1–1.

    Google Scholar 

  111. Amer, R., Butt, M. M., Bennis, M., & Marchetti, N. (2018). Inter-cluster cooperation for wireless D2D caching networks. IEEE Transactions on Wireless Communications, 17(9), 6108–6121.

    Google Scholar 

  112. Chen, Z., Pappas, N., & Kountouris, M. (2017). Probabilistic caching in wireless D2D networks: Cache hit optimal versus throughput optimal. IEEE Communications Letters, 21(3), 584–587.

    Google Scholar 

  113. Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., & Vucetic, B. (2018). Localized small cell caching: A machine learning approach based on rating data. IEEE Transactions on Communications, 67, 1663–1676.

    Google Scholar 

  114. Kiskani, M. K., & Sadjadpour, H. R. (2017). Throughput analysis of decentralized coded content caching in cellular networks. IEEE Transactions on Wireless Communications, 16(1), 663–672.

    Google Scholar 

  115. Golrezaei, N., Molisch, A. F., Dimakis, A. G., & Caire, G. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.

    Google Scholar 

  116. Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high- throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665–3676.

    Google Scholar 

  117. Kim, K., & Hong, C. S. (2019) Optimal task-UAV-edge matching for computation offloading in UAV assisted mobile edge computing (pp. 1–4). IEEE.

  118. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.

    Google Scholar 

  119. Narang, M., **ang, S., Liu, W., Gutierrez, J., Chiaraviglio, L, Sathiaseelan, A., & Merwaday, A. (2017). UAV-assisted edge infrastructure for challenged networks (pp. 60–65). IEEE.

  120. Liu, W. X., Zhang, J., Liang, Z. W., Peng, L. X., & Cai, J. (2018). Content popularity prediction and caching for ICN: A deep learning approach with SDN. IEEE Access, 6, 5075–5089.

    Google Scholar 

  121. Hao, H., Xu, C., Wang, M., **e, H., Liu, Y., & Wu, D. O. (2018). Knowledge-centric proactive edge caching over mobile content distribution network (pp. 450–455). IEEE.

  122. Baştuǧ, E., Bennis, M., Zeydan, E., et al. (2015). Big data meets telcos: A proactive caching perspective. Journal of Communications and Networks, 17(6), 549–557.

    Google Scholar 

  123. Kader, M. A., Bastug, E., Bennis, M., Zeydan, E., Karatepe, A., Salih Er, A., Debbah, M. (2015). Leveraging big data analytics for cache-enabled wireless networks (pp. 1–6). IEEE.

  124. Paschos, G., Bastug, E., Land, I., Caire, G., & Debbah, M. (2016). Wireless caching: Technical misconceptions and business barriers. IEEE Communications Magazine, 54(8), 16–22.

    Google Scholar 

  125. Hajri, S. E., & Assaad, M. (2018). Energy efficiency in cache-enabled small cell networks with adaptive user clustering. IEEE Transactions on Wireless Communications, 17(2), 955–968.

    Google Scholar 

  126. Sadeghi, A., Sheikholeslami, F., Matrques, A. G., & Giannakis, G. B. (2018). Reinforcement learning for 5G caching with dynamic cost (pp. 6653–6657). IEEE.

  127. Sadeghi, A., Sheikholeslami, F., & Giannakis, G. B. (2018). Optimal and scalable caching for 5G using reinforcement learning of space-time popularities. IEEE Journal of Selected Topics in Signal Processing, 12(1), 180–190.

    Google Scholar 

  128. Mishra, S. K., Pandey, P., Arya, P., & Jain, A. (2018). Efficient proactive caching in storage constrained 5G small cells (pp. 291–296). IEEE.

  129. Hou, T., Feng, G., Qin, S., & Jiang, W. (2018). Proactive content caching by exploiting transfer learning for mobile edge computing. International Journal of Communication Systems, 31(11), e3706.

    Google Scholar 

  130. Lei, L., You, L., Dai, G., Vu, T. X., Yuan, D., & Chatzinotas, S. (2017). A deep learning approach for optimizing content delivering in cache-enabled HetNet (pp. 449–453). IEEE.

  131. Tang, Q., **e, R., Huang, T., & Liu, Y. (2018). Hierarchical collaborative caching in 5G networks. IET Communications, 12(18), 2357–2365.

    Google Scholar 

  132. Mohammed, L., Jaseemuddin, M., & Anpalagan, A. (2018). Fuzzy soft-set based approach for femto-caching in wireless networks. IEEE.

  133. Mahendra Mallick, Vikram Krishnamurthy, Ba-Ngu Vo, (2012). Distributed detection and decision fusion with applications to wireless sensor networks. In Integrated Tracking, Classification, and Sensor Management: Theory and Applications,.Wiley-IEEE Press, pp. 617–660.

  134. Roux, L. (1997). An application of possibility theory information fusion to satellite image classification (pp. 166–179). Springer.

  135. Lobato, F. S, & Steffen, Jr. V. (2017). Multi-objective optimization problems: Concepts and self-adaptive parameters with mathematical and engineering applications. Springer.

  136. Chen, Z., & Liu, B. (2016). Life long machine learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(3), 1–145.

    Google Scholar 

  137. Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.

Download references

Funding

This work is funded in part by the Discovery Grant from National Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagan Anpalagan.

Ethics declarations

Conflict of interest

There are no conflicts of interest or competing interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, L.B., Anpalagan, A. & Jaseemuddin, M. Energy and Latency Efficient Caching in Mobile Edge Networks: Survey, Solutions, and Challenges. Wireless Pers Commun 129, 1249–1283 (2023). https://doi.org/10.1007/s11277-023-10187-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10187-9

Keywords

Navigation