Log in

Design of Bio-implantable Antenna Using Metamaterial Substrate

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact microstrip patch antenna is proposed with metamaterial-based split-ring resonators (SRR) for biotelemetry application. This antenna works on industrial, scientific, and medical (ISM) band (2.4–2.45 GHz and 5.7–5.875 GHz). The proposed antenna was designed, fabricated, and tested using FR4 substrate, and a polyamide superstrate layer is used which has dielectric constant 4.3 and 3.5 respectively. The dimension of an antenna is 10 × 10 × 1.1mm3. The frequency range covered by an antenna is 2.45 GHz and 5.8 GHz with bandwidth 450 MHz and 350 MHz respectively. Antennas resonating frequency is 2.45 GHz and 5.75 GHz at which its return loss is − 31 dB and − 18.5 dB respectively inside the skin. For validation of results, antenna performance is tested inside vitro solution of skin mimicking liquid. This compact size miniaturized implantable antenna is suitable for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Journals and literature resource available in universities central library.

References

  1. Liu, R., Zhang, K., Li, Z., Cui, W., Liang, W., & Wang, M. (2021). A wideband circular polarization implantable antenna for health monitor microsystem. IEEE Antennas and Wireless Propagation Letters, 20(5), 848–853.

    Article  Google Scholar 

  2. Issa And, M., & Essaaidi, M. (2016). A novel compact multiband broadside-coupled split-ring resonator metamaterial structure loaded fractal slot antenna for 4g communications and wireless systems. Microwave and Optical Technology Letters, 58(12), 2823–2828.

    Article  Google Scholar 

  3. Singh, H., Sohi, B., & Gupta, A. (2019). Designing and analysis of cross-shaped CRLH metamaterial for wideband negative-index characteristics. Material Research Express, 6, 075801–075820.

    Article  Google Scholar 

  4. Mosallaei, H., & Sarabandi, K. (2007). Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate. IEEE Transactions on Antennas and Propagation, 55(1), 1–6.

    Article  Google Scholar 

  5. Benosman, H., & Boukli-Hacene, N. (2012). “Design and simulation of double S-shaped metamaterial. International Journal of Computer Science Issues (IJCSI), 9, 0814–1694.

    Google Scholar 

  6. Rashed, M., Faruque, I., & Jakir, M. (2017). Design and analysis of a new double C-shaped miniaturized metamaterial for multiband applications. Applied Physics A, 123(5), 1–8.

    Google Scholar 

  7. Dhouibi, A., Burokur, S. N., Lustrac, A., & Priou, A. (2012). Study and analysis of an electric Z-shaped meta-atom. Advanced Electromagnetics, 1, 64–70.

    Article  Google Scholar 

  8. Ahmad, B., Mohammad, S., & Sharawi, S. (2013). Extraction of material parameters for metamaterials using a full-wave simulator. IEEE Antennas and Propagation Magazine, 55(5), 202–212.

    Article  Google Scholar 

  9. Saha, C., Siddiqui, J., & Antar, Y. (2011). Square split ring resonator backed coplanar waveguide for filter applications. In: 2011XXXth URSI general assembly and scientific symposium, pp. 1–4

  10. Bahl, I., & Bhartia, P. (1998). Microwave solid state circuit design. John Wiley & Sons.

    Google Scholar 

  11. Terman, F. E. (1943). Radio engineers handbook. Mcgraw-Hill.

    Google Scholar 

  12. Jiang, Z., Wang, Z., Leach, M., Lim, E., Wang, J., & Huang, Y. (2019). Wideband loop antenna with split ring resonators for wireless medical telemetry. IEEE Antennas and Wireless Propagation Letters, 18(7), 1415–1419.

    Article  Google Scholar 

  13. Hasan, M., Rahman, M., Faruque, M., & Islam, M.-T. (2019). Bandwidth enhanced metamaterial embedded inverse L-slotted antenna for WiFi/WLAN/WiMAX wireless communication. Material Research Express, 6, 085805–085815.

    Article  Google Scholar 

  14. Singh, G., & Kaur, J. (2020). “Skin and brain implantable inset-fed antenna at ISM band for wireless biotelemetry applications. Microw Opt Technology Lett, 1, 1–6.

    Google Scholar 

  15. Kasem, F., Al-Husseini, M., Ramadan, A., Haskou, A., Kabalank, Y., & El-Hajja, A. (2012). A compact quad-band metamaterial-based antenna for wireless applications. In: 2nd International conference on advances in computational tools for engineering applications (ACTEA) (Lebanon: Beirut), Vol. 1, pp. 120–123.

  16. Li, K., Zhu, C., Li, L., & Liang, C. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antenna Wireless Propagation Letter, 12, 678–681.

    Article  Google Scholar 

  17. Abed, A. T., & Singh, M. S. (2016). “Slot antenna single layer fed by step impedance strip line for Wi-Fi and Wi-Max applications. Electronics Letter, 52, 1196–1204.

    Article  Google Scholar 

  18. Nandi, S., & Mohan, A. (2017). CRLH unit cell loaded tri-band compact MIMO antenna for WLAN/WiMAX applications. IEEE Antenna, Wireless Propagation Letter, 16, 1816–1825.

    Google Scholar 

  19. Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 2258–2267.

    Article  Google Scholar 

  20. Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 3, 1–11.

    Google Scholar 

  21. Yang, Z.-J., & Zhu, L. (2020). An implantable wideband microstrip patch antenna based on high-loss property of human tissue. IEEE Access, 8, 93048–93058.

    Article  Google Scholar 

  22. Santoshkumar-Singh, M., Ghosh, J., Ghosh, S., & Sarkhe, A. (2021). Miniaturized dual-antenna system for implantable biotelemetry application. IEEE Antennas and Wireless Propagation Letters 20(8)

  23. Hayat, S., Shah, S. A. A., & Yoo, H. (2021). Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system. IEEE Transactions on Antennas and Propagation, 69(4).

  24. Abdi, A., Ghorbani, F., & Aliakbarian, H. (2020). Electrically small spiral PIFA for deep implantable devices. IEEE Access, 8, 158459–158474.

    Article  Google Scholar 

  25. Berkelmann, L., & Manteuffel, D. (2021). Antenna parameters for on-body communications with wearable and implantable antennas. IEEE Transactions on Antennas and Propagation, 69(9), 34–41.

    Article  Google Scholar 

  26. Bilotti, F., Toscano, A., & Vegni, L. (2007). Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 55(8), 56–64.

    Article  Google Scholar 

  27. Patel, S., & Kosta, Y. (2014). Square-tooth split ring resonator: A novel metamaterial for bandwidth and radiation improvement in microstrip-based radiating structure design. Journal of Modern Optics, 1, 1–11.

    Google Scholar 

Download references

Funding

We have support to access the software’s and network analyzer which is available in research lab in VIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rufus.

Ethics declarations

Conflict of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, K.S., Rufus, E. Design of Bio-implantable Antenna Using Metamaterial Substrate. Wireless Pers Commun 124, 1443–1455 (2022). https://doi.org/10.1007/s11277-021-09414-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09414-y

Keywords

Navigation